Flávia Gonçalves, Larissa Sampaio Tavares Silva, Julia Noborikawa Roschel, Greca de Souza, Luiza de Paiva Mello Campos, Gustavo Henrique Varca, Duclerc Parra, Mirko Ayala Perez, Antonio Carlos Gordilho, William Cunha Brandt, Leticia Boaro
{"title":"Antibacterial Resin Composites with Sustained Chlorhexidine Release: One-Year In Vitro Study.","authors":"Flávia Gonçalves, Larissa Sampaio Tavares Silva, Julia Noborikawa Roschel, Greca de Souza, Luiza de Paiva Mello Campos, Gustavo Henrique Varca, Duclerc Parra, Mirko Ayala Perez, Antonio Carlos Gordilho, William Cunha Brandt, Leticia Boaro","doi":"10.3390/pharmaceutics17091144","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> The addition of chlorhexidine in dental restorative materials is a promising strategy to reduce the recurrence of tooth decay lesions. However, the main challenge is to develop materials with antimicrobial activity in the long term. <b>Objective:</b> This study analyses the effect of filler type and concentration of resin composites supplemented with chlorhexidine loaded in carrier montmorillonite particles (MMT/CHX) regarding their chemical, physical, and short- and long-term antimicrobial proprieties. <b>Materials:</b> Experimental composites were synthesized with 0, 30, or 60% filler in two ratios, 70/30 and 80/20, of barium glass/colloidal silica, respectively, and 5 wt% MMT/CHX. Conversion was measured using near Fourier-transform infrared spectrometry. Sorption and solubility were determined by specimen weight before and after drying and immersing in water. Flexural strength (FS) and elastic modulus (E) were determined by three bending tests using a universal test machine. Chlorhexidine release was monitored for 50 days. <i>Streptococcus mutans</i> UA159 was used in all microbiological assays. Inhibition halo assay was performed for 12 months and, also, biofilm growth for the specimens and colony-forming unit (CFU). Remineralization assay was used on restored teeth using measurements of microhardness Knoop and CFUs. <b>Results:</b> Conversion, sorption, and solubility were not affected by filler type and concentration. FS and E increase with the filler concentration, independent from filler type. Chlorhexidine was significantly released for 15 days for all experimental materials, and the increase in filler concentration decreased its release. Halo inhibition was observed for a longer time (12 months) in materials with 60 wt% filler at 70/30 proportion. Also, 60 wt% filler materials, independent from the filler ratio, reduced the CFU in relation to the control group from 8 to 12 months. In the remineralization assay, besides the absence of differences in hardness among the groups, after biofilm growth, the CFU was also significantly lower in materials with 60 wt% filler. <b>Conclusions:</b> Materials with 60% filler, preferentially with 70% barium glass and 30% silica, and 5% MMT/CHX particles demonstrated long-term antimicrobial activity, reaching 12 months of effectiveness. Also, this formulation was associated with higher mechanical properties and similar conversion, sorption, and solubility compared to the other materials.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":"17 9","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473463/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pharmaceutics17091144","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The addition of chlorhexidine in dental restorative materials is a promising strategy to reduce the recurrence of tooth decay lesions. However, the main challenge is to develop materials with antimicrobial activity in the long term. Objective: This study analyses the effect of filler type and concentration of resin composites supplemented with chlorhexidine loaded in carrier montmorillonite particles (MMT/CHX) regarding their chemical, physical, and short- and long-term antimicrobial proprieties. Materials: Experimental composites were synthesized with 0, 30, or 60% filler in two ratios, 70/30 and 80/20, of barium glass/colloidal silica, respectively, and 5 wt% MMT/CHX. Conversion was measured using near Fourier-transform infrared spectrometry. Sorption and solubility were determined by specimen weight before and after drying and immersing in water. Flexural strength (FS) and elastic modulus (E) were determined by three bending tests using a universal test machine. Chlorhexidine release was monitored for 50 days. Streptococcus mutans UA159 was used in all microbiological assays. Inhibition halo assay was performed for 12 months and, also, biofilm growth for the specimens and colony-forming unit (CFU). Remineralization assay was used on restored teeth using measurements of microhardness Knoop and CFUs. Results: Conversion, sorption, and solubility were not affected by filler type and concentration. FS and E increase with the filler concentration, independent from filler type. Chlorhexidine was significantly released for 15 days for all experimental materials, and the increase in filler concentration decreased its release. Halo inhibition was observed for a longer time (12 months) in materials with 60 wt% filler at 70/30 proportion. Also, 60 wt% filler materials, independent from the filler ratio, reduced the CFU in relation to the control group from 8 to 12 months. In the remineralization assay, besides the absence of differences in hardness among the groups, after biofilm growth, the CFU was also significantly lower in materials with 60 wt% filler. Conclusions: Materials with 60% filler, preferentially with 70% barium glass and 30% silica, and 5% MMT/CHX particles demonstrated long-term antimicrobial activity, reaching 12 months of effectiveness. Also, this formulation was associated with higher mechanical properties and similar conversion, sorption, and solubility compared to the other materials.
PharmaceuticsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
7.90
自引率
11.10%
发文量
2379
审稿时长
16.41 days
期刊介绍:
Pharmaceutics (ISSN 1999-4923) is an open access journal which provides an advanced forum for the science and technology of pharmaceutics and biopharmaceutics. It publishes reviews, regular research papers, communications, and short notes. Covered topics include pharmacokinetics, toxicokinetics, pharmacodynamics, pharmacogenetics and pharmacogenomics, and pharmaceutical formulation. Our aim is to encourage scientists to publish their experimental and theoretical details in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.