Orsolya Csendes, Gábor Vasvári, Ádám Haimhoffer, László Horváth, Monika Béresová, Attila Bényei, Ildikó Bácskay, Pálma Fehér, Zoltán Ujhelyi, Dániel Nemes
{"title":"Bioavailability Enhancement of Curcumin by PEG-Based Gastroretentive System: Development and In Vitro Evaluation.","authors":"Orsolya Csendes, Gábor Vasvári, Ádám Haimhoffer, László Horváth, Monika Béresová, Attila Bényei, Ildikó Bácskay, Pálma Fehér, Zoltán Ujhelyi, Dániel Nemes","doi":"10.3390/pharmaceutics17091166","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives:</b> Increasing the bioavailability of poorly absorbed drugs is a continuous challenge in modern pharmaceutical technology. This is due to the problematic nature of BCS class IV active pharmaceutical ingredients: these drugs possess poor solubility and membrane permeability. Moreover, many undergo immediate efflux and/or rapid systemic metabolism after absorption. This project aimed to improve the bioavailability of BCS class IV drugs by formulating gastroretentive self-emulsifying systems using curcumin as a model drug. <b>Methods:</b> The base of the systems was created by melting emulsifying agents, dissolution retardants, and PEGs together. Curcumin was added after the mixture was cooled slightly. Aqueous dispersions of several compositions were characterized by dynamic light scattering. After screening these results, the viscosities of the selected formulations were evaluated. Dissolution retardants were selected and added to the most superior samples, and their dissolution profiles were compared. Gastroretention of the final formulation was achieved by dispersing air in the molten system through melt foaming; internal structure was assessed by microCT, and physicochemical properties by PXRD and DSC. Cytotoxicity was measured in Caco-2 cells using MTT and Neutral Red assays, and transcellular transport was also studied. <b>Results:</b> Based on these results, a homogeneous gastric floating system was developed. We observed an advantageous cytotoxic profile and increased bioavailability. <b>Conclusions:</b> Overall, we were able to create a self-emulsifying gastroretentive formulation displaying extended release and gastric retention with a low amount of cost-efficient excipients.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":"17 9","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473007/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pharmaceutics17091166","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background/Objectives: Increasing the bioavailability of poorly absorbed drugs is a continuous challenge in modern pharmaceutical technology. This is due to the problematic nature of BCS class IV active pharmaceutical ingredients: these drugs possess poor solubility and membrane permeability. Moreover, many undergo immediate efflux and/or rapid systemic metabolism after absorption. This project aimed to improve the bioavailability of BCS class IV drugs by formulating gastroretentive self-emulsifying systems using curcumin as a model drug. Methods: The base of the systems was created by melting emulsifying agents, dissolution retardants, and PEGs together. Curcumin was added after the mixture was cooled slightly. Aqueous dispersions of several compositions were characterized by dynamic light scattering. After screening these results, the viscosities of the selected formulations were evaluated. Dissolution retardants were selected and added to the most superior samples, and their dissolution profiles were compared. Gastroretention of the final formulation was achieved by dispersing air in the molten system through melt foaming; internal structure was assessed by microCT, and physicochemical properties by PXRD and DSC. Cytotoxicity was measured in Caco-2 cells using MTT and Neutral Red assays, and transcellular transport was also studied. Results: Based on these results, a homogeneous gastric floating system was developed. We observed an advantageous cytotoxic profile and increased bioavailability. Conclusions: Overall, we were able to create a self-emulsifying gastroretentive formulation displaying extended release and gastric retention with a low amount of cost-efficient excipients.
PharmaceuticsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
7.90
自引率
11.10%
发文量
2379
审稿时长
16.41 days
期刊介绍:
Pharmaceutics (ISSN 1999-4923) is an open access journal which provides an advanced forum for the science and technology of pharmaceutics and biopharmaceutics. It publishes reviews, regular research papers, communications, and short notes. Covered topics include pharmacokinetics, toxicokinetics, pharmacodynamics, pharmacogenetics and pharmacogenomics, and pharmaceutical formulation. Our aim is to encourage scientists to publish their experimental and theoretical details in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.