Aspergillus oryzae Fermentation of Lophatheri Herba Elevates SCFAs and Transforms Flavonoids to Fortify the Gut Barrier via Microbiota Remodeling in Mice.
{"title":"<i>Aspergillus oryzae</i> Fermentation of Lophatheri Herba Elevates SCFAs and Transforms Flavonoids to Fortify the Gut Barrier via Microbiota Remodeling in Mice.","authors":"Xin Ma, Jiaxuan Chen, Rui Chen, Wenjiao Liang, Rui Huang, Lishiyuan Tang, Lichun Qian","doi":"10.3390/nu17182996","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Lophatheri Herba, a traditional East Asian herb with documented food uses, contains bioactive flavonoids. This study investigated how <i>Aspergillus oryzae</i> fermentation modifies its short-chain fatty acids (SCFAs) and metabolome, and evaluated the fermented product's impact on intestinal barrier function in mice.</p><p><strong>Methods: </strong>Fermented leaf extracts were analyzed via GC-MS/LC-MS for SCFAs and metabolites. Forty-eight mice were divided into control (standard diet) and three experimental groups (25, 50, 100 mg/kg/day fermented product). After a 4-week intervention, duodenal morphology, colonic cytokines (IL-6/IL-1β), and cecal microbiota were assessed.</p><p><strong>Results: </strong>We identified significant SCFAs optimization. Significantly increased: acetic acid; butyric acid (<i>p</i> < 0.001); isobutyric acid (<i>p</i> < 0.01); isovaleric acid (<i>p</i> < 0.05). No significant change: propionic acid and isohexanoic acid. Significantly decreased: valeric acid and hexanoic acid (<i>p</i> < 0.001). Metabolomic remodeling showed (i) flavonoid pathway activation and (ii) key metabolite upregulation (daidzein, 4,7-dihydroxyflavone, 3,7-dimethylquercetin, aloe-emodin, soyasapogenol M1, etc.). Gut function peaked at 100 mg/kg with 18% higher duodenal villus height (<i>p</i> < 0.05), improved villus/crypt ratio, and reduced IL-6/IL-1β. Probiotic taxa including Lactobacillus, unclassified f__Lachnospiraceae, Dubosiella, and Monoglobus increased.</p><p><strong>Conclusions: </strong>Fermented Lophatheri Herba protects gut health through synergistic SCFAs optimization, flavonoid enrichment, and probiotic proliferation, supporting its potential as a microbiota-targeting functional food ingredient.</p>","PeriodicalId":19486,"journal":{"name":"Nutrients","volume":"17 18","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472607/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nutrients","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/nu17182996","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Lophatheri Herba, a traditional East Asian herb with documented food uses, contains bioactive flavonoids. This study investigated how Aspergillus oryzae fermentation modifies its short-chain fatty acids (SCFAs) and metabolome, and evaluated the fermented product's impact on intestinal barrier function in mice.
Methods: Fermented leaf extracts were analyzed via GC-MS/LC-MS for SCFAs and metabolites. Forty-eight mice were divided into control (standard diet) and three experimental groups (25, 50, 100 mg/kg/day fermented product). After a 4-week intervention, duodenal morphology, colonic cytokines (IL-6/IL-1β), and cecal microbiota were assessed.
Results: We identified significant SCFAs optimization. Significantly increased: acetic acid; butyric acid (p < 0.001); isobutyric acid (p < 0.01); isovaleric acid (p < 0.05). No significant change: propionic acid and isohexanoic acid. Significantly decreased: valeric acid and hexanoic acid (p < 0.001). Metabolomic remodeling showed (i) flavonoid pathway activation and (ii) key metabolite upregulation (daidzein, 4,7-dihydroxyflavone, 3,7-dimethylquercetin, aloe-emodin, soyasapogenol M1, etc.). Gut function peaked at 100 mg/kg with 18% higher duodenal villus height (p < 0.05), improved villus/crypt ratio, and reduced IL-6/IL-1β. Probiotic taxa including Lactobacillus, unclassified f__Lachnospiraceae, Dubosiella, and Monoglobus increased.
Conclusions: Fermented Lophatheri Herba protects gut health through synergistic SCFAs optimization, flavonoid enrichment, and probiotic proliferation, supporting its potential as a microbiota-targeting functional food ingredient.
期刊介绍:
Nutrients (ISSN 2072-6643) is an international, peer-reviewed open access advanced forum for studies related to Human Nutrition. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.