Alexandra Mpakosi, Christiana Kaliouli-Antonopoulou, Vasileios Cholevas, Stamatios Cholevas, Ioannis Tzouvelekis, Maria Mironidou-Tzouveleki, Emmanuel A Tsantes, Deny Tsakri, Marianna Vlachaki, Stella Baliou, Petros Ioannou, Rozeta Sokou, Stefanos Bonovas, Andreas G Tsantes
{"title":"From Ancient Philosophy to Endosymbiotic Theory: The Bacterial Origin and Key Role of Mitochondria in Immune Responses.","authors":"Alexandra Mpakosi, Christiana Kaliouli-Antonopoulou, Vasileios Cholevas, Stamatios Cholevas, Ioannis Tzouvelekis, Maria Mironidou-Tzouveleki, Emmanuel A Tsantes, Deny Tsakri, Marianna Vlachaki, Stella Baliou, Petros Ioannou, Rozeta Sokou, Stefanos Bonovas, Andreas G Tsantes","doi":"10.3390/microorganisms13092149","DOIUrl":null,"url":null,"abstract":"<p><p>The endosymbiotic theory, which is the crucial starting point of eukaryogenesis, was first mentioned in the philosophy of the pre-Socratic Greek philosopher Empedocles. According to him, everything merges into units with differential survival. Similarly, during eukaryogenesis, the fusion of two distinct units resulted in the creation of a new cell type that possessed a newly formed organelle, the mitochondrion. Since then, the mitochondrion has been a key regulator of health and immunity. Furthermore, many of its characteristics and functions are due to its endosymbiotic bacterial origin. For example, it possesses damage-associated molecular patterns that can activate inflammatory signaling pathways, has circular DNA with CpG-rich motifs, as well as a double phospholipid membrane, and divides by fission. Mitochondrial function plays a critical role in maintaining cellular homeostasis, as they meet the cell's energy needs and regulate many of its functions. However, after cellular damage due to infection, radiation, or toxins, mitochondrial stress and dysfunction can occur and mitochondrial DNA can be released into the cytosol. Cytosolic mitochondrial DNA can then activate proinflammatory signaling pathways, mediated by TLR9 and cGAS, as well as inflammasomes, triggering inflammation and autoimmunity.</p>","PeriodicalId":18667,"journal":{"name":"Microorganisms","volume":"13 9","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472402/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microorganisms","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/microorganisms13092149","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The endosymbiotic theory, which is the crucial starting point of eukaryogenesis, was first mentioned in the philosophy of the pre-Socratic Greek philosopher Empedocles. According to him, everything merges into units with differential survival. Similarly, during eukaryogenesis, the fusion of two distinct units resulted in the creation of a new cell type that possessed a newly formed organelle, the mitochondrion. Since then, the mitochondrion has been a key regulator of health and immunity. Furthermore, many of its characteristics and functions are due to its endosymbiotic bacterial origin. For example, it possesses damage-associated molecular patterns that can activate inflammatory signaling pathways, has circular DNA with CpG-rich motifs, as well as a double phospholipid membrane, and divides by fission. Mitochondrial function plays a critical role in maintaining cellular homeostasis, as they meet the cell's energy needs and regulate many of its functions. However, after cellular damage due to infection, radiation, or toxins, mitochondrial stress and dysfunction can occur and mitochondrial DNA can be released into the cytosol. Cytosolic mitochondrial DNA can then activate proinflammatory signaling pathways, mediated by TLR9 and cGAS, as well as inflammasomes, triggering inflammation and autoimmunity.
期刊介绍:
Microorganisms (ISSN 2076-2607) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to prokaryotic and eukaryotic microorganisms, viruses and prions. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.