Milica Ćurčić, Branka Hadžić, Martina Gilić, Zorica Lazarević, Andjelija Ilić
{"title":"BaTiO<sub>3</sub> Nanocarriers: Advancing Targeted Therapies with Smart Drug Release.","authors":"Milica Ćurčić, Branka Hadžić, Martina Gilić, Zorica Lazarević, Andjelija Ilić","doi":"10.3390/pharmaceutics17091203","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives</b>: Barium titanate (BaTiO<sub>3</sub>)-based nanocarriers have emerged as versatile and promising platforms for targeted drug delivery, owing to their unique combination of biocompatibility, piezoelectric and ferroelectric properties, as well as responsiveness to external stimuli. These multifunctional ceramic nanoparticles can be precisely engineered to enable spatiotemporally controlled release of therapeutic agents, triggered by physical stimuli such as ultrasound, light, magnetic fields, temperature changes, and pH variations. Such an approach enhances treatment efficacy while reducing systemic side effects. <b>Methods</b>: This review provides a comprehensive overview of the latest advancements in the development and biomedical application of BaTiO<sub>3</sub>-based nanocarriers. Special emphasis is placed on modern synthesis strategies, surface functionalization methods, and the integration of BaTiO<sub>3</sub> with other functional nanomaterials to create hybrid systems with improved therapeutic performance. Key challenges in clinical translation are also discussed, including biocompatibility assessment, biodistribution, and regulatory requirements. <b>Conclusions</b>: BaTiO<sub>3</sub>-based nanocarriers show promise as materials well suited for advanced biomedical applications. The paper concludes with an outline of future research directions aimed at optimizing these advanced nanosystems for precision and personalized medicine, with applications in oncology, anti-infective therapy, and regenerative medicine.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":"17 9","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473860/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pharmaceutics17091203","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background/Objectives: Barium titanate (BaTiO3)-based nanocarriers have emerged as versatile and promising platforms for targeted drug delivery, owing to their unique combination of biocompatibility, piezoelectric and ferroelectric properties, as well as responsiveness to external stimuli. These multifunctional ceramic nanoparticles can be precisely engineered to enable spatiotemporally controlled release of therapeutic agents, triggered by physical stimuli such as ultrasound, light, magnetic fields, temperature changes, and pH variations. Such an approach enhances treatment efficacy while reducing systemic side effects. Methods: This review provides a comprehensive overview of the latest advancements in the development and biomedical application of BaTiO3-based nanocarriers. Special emphasis is placed on modern synthesis strategies, surface functionalization methods, and the integration of BaTiO3 with other functional nanomaterials to create hybrid systems with improved therapeutic performance. Key challenges in clinical translation are also discussed, including biocompatibility assessment, biodistribution, and regulatory requirements. Conclusions: BaTiO3-based nanocarriers show promise as materials well suited for advanced biomedical applications. The paper concludes with an outline of future research directions aimed at optimizing these advanced nanosystems for precision and personalized medicine, with applications in oncology, anti-infective therapy, and regenerative medicine.
PharmaceuticsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
7.90
自引率
11.10%
发文量
2379
审稿时长
16.41 days
期刊介绍:
Pharmaceutics (ISSN 1999-4923) is an open access journal which provides an advanced forum for the science and technology of pharmaceutics and biopharmaceutics. It publishes reviews, regular research papers, communications, and short notes. Covered topics include pharmacokinetics, toxicokinetics, pharmacodynamics, pharmacogenetics and pharmacogenomics, and pharmaceutical formulation. Our aim is to encourage scientists to publish their experimental and theoretical details in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.