Maria Eduarda Dos Santos Pereira de Oliveira, Larissa Krokovsky, Maria Júlia Brito Couto, Duschinka Ribeiro Duarte Guedes, George Tadeu Nunes Diniz, Constância Flávia Junqueira Ayres, Marcelo Henrique Santos Paiva
{"title":"Evaluation of the Impact of Coinfection and Superinfection on Chikungunya and Mayaro Viruses' Replication in <i>Aedes aegypti</i>.","authors":"Maria Eduarda Dos Santos Pereira de Oliveira, Larissa Krokovsky, Maria Júlia Brito Couto, Duschinka Ribeiro Duarte Guedes, George Tadeu Nunes Diniz, Constância Flávia Junqueira Ayres, Marcelo Henrique Santos Paiva","doi":"10.3390/microorganisms13092165","DOIUrl":null,"url":null,"abstract":"<p><p>The simultaneous circulation of multiple arboviruses, often driven by (re)emergence events, poses challenges to public health systems. In Brazil, the co-circulation of Dengue virus (DENV), Zika virus (ZIKV), Chikungunya virus (CHIKV), and Oropouche virus (OROV), together with the potential urban emergence of Mayaro virus (MAYV), underscores the importance of understanding interactions among these pathogens within their vectors. This study investigated the effects of CHIKV and MAYV coinfection and superinfection on replication dynamics in <i>Aedes aegypti</i>. Mosquitoes were experimentally exposed to CHIKV and MAYV through artificial blood meals under coinfection and superinfection conditions. Infection (IR), dissemination (DR), and transmission (TR) rates, as well as viral loads, were quantified by quantitative reverse transcription PCR (qRT-PCR). To confirm viral replication and assess cytopathic effects, positive saliva samples were inoculated in Vero cells, followed by serial passages and plaque assays for viral titration. The results showed that <i>Ae. aegypti</i> is capable of transmitting both CHIKV and MAYV concurrently during coinfection. However, in superinfection scenarios, prior infection with either virus significantly reduced the transmission efficiency of the subsequently acquired virus, indicating viral interference at the replication level. These findings underscore the complexity of arboviral interactions within vectors and highlight their potential implications for transmission dynamics. Continuous entomo-virological surveillance and targeted research are essential for anticipating and mitigating the impact of arboviral co-circulation in endemic regions.</p>","PeriodicalId":18667,"journal":{"name":"Microorganisms","volume":"13 9","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472765/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microorganisms","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/microorganisms13092165","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The simultaneous circulation of multiple arboviruses, often driven by (re)emergence events, poses challenges to public health systems. In Brazil, the co-circulation of Dengue virus (DENV), Zika virus (ZIKV), Chikungunya virus (CHIKV), and Oropouche virus (OROV), together with the potential urban emergence of Mayaro virus (MAYV), underscores the importance of understanding interactions among these pathogens within their vectors. This study investigated the effects of CHIKV and MAYV coinfection and superinfection on replication dynamics in Aedes aegypti. Mosquitoes were experimentally exposed to CHIKV and MAYV through artificial blood meals under coinfection and superinfection conditions. Infection (IR), dissemination (DR), and transmission (TR) rates, as well as viral loads, were quantified by quantitative reverse transcription PCR (qRT-PCR). To confirm viral replication and assess cytopathic effects, positive saliva samples were inoculated in Vero cells, followed by serial passages and plaque assays for viral titration. The results showed that Ae. aegypti is capable of transmitting both CHIKV and MAYV concurrently during coinfection. However, in superinfection scenarios, prior infection with either virus significantly reduced the transmission efficiency of the subsequently acquired virus, indicating viral interference at the replication level. These findings underscore the complexity of arboviral interactions within vectors and highlight their potential implications for transmission dynamics. Continuous entomo-virological surveillance and targeted research are essential for anticipating and mitigating the impact of arboviral co-circulation in endemic regions.
期刊介绍:
Microorganisms (ISSN 2076-2607) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to prokaryotic and eukaryotic microorganisms, viruses and prions. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.