Molecular Insights into Ammonium Sulfate-Induced Secretome Reprogramming of Bacillus subtilis Czk1 for Enhanced Biocontrol Against Rubber Tree Root Rot.
{"title":"Molecular Insights into Ammonium Sulfate-Induced Secretome Reprogramming of <i>Bacillus subtilis</i> Czk1 for Enhanced Biocontrol Against Rubber Tree Root Rot.","authors":"Yanqiong Liang, Shibei Tan, Ying Lu, Helong Chen, Xing Huang, Kexian Yi, Chunping He, Weihuai Wu","doi":"10.3390/microorganisms13092212","DOIUrl":null,"url":null,"abstract":"<p><p>Root rot diseases caused by <i>Ganoderma pseudoferreum</i> and <i>Pyrrhoderma noxium</i> inflict substantial economic losses in rubber tree (<i>Hevea brasiliensis</i>) cultivation, while conventional control methods face environmental and resistance challenges. This study aimed to specifically investigate the molecular mechanisms by which ammonium sulfate enhances the biocontrol efficacy of <i>Bacillus subtilis</i> Czk1. Using label-free quantitative proteomics (LC-MS/MS), we characterized ammonium sulfate-induced alterations in the secretory proteome of Czk1. A total of 351 differentially expressed proteins (DEPs) were identified, with 329 significantly up-regulated and 22 down-regulated. GO functional enrichment analysis indicated that up-regulated DEPs were associated with metabolic pathways (glyoxylate/dicarboxylate, arginine/proline, cofactor biosynthesis) and extracellular localization (13 proteins), while down-regulated DEPs were linked to small molecule catabolism. KEGG pathway annotation identified DEP involvement in 124 pathways, including secondary metabolite biosynthesis and membrane transport. These findings demonstrate that ammonium sulfate remodels the Czk1 secretome to enhance the expression of key antagonistic proteins, thereby providing crucial molecular targets and a scientific foundation for developing effective biofungicides against rubber root rot, with clear practical implications for sustainable disease management.</p>","PeriodicalId":18667,"journal":{"name":"Microorganisms","volume":"13 9","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472613/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microorganisms","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/microorganisms13092212","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Root rot diseases caused by Ganoderma pseudoferreum and Pyrrhoderma noxium inflict substantial economic losses in rubber tree (Hevea brasiliensis) cultivation, while conventional control methods face environmental and resistance challenges. This study aimed to specifically investigate the molecular mechanisms by which ammonium sulfate enhances the biocontrol efficacy of Bacillus subtilis Czk1. Using label-free quantitative proteomics (LC-MS/MS), we characterized ammonium sulfate-induced alterations in the secretory proteome of Czk1. A total of 351 differentially expressed proteins (DEPs) were identified, with 329 significantly up-regulated and 22 down-regulated. GO functional enrichment analysis indicated that up-regulated DEPs were associated with metabolic pathways (glyoxylate/dicarboxylate, arginine/proline, cofactor biosynthesis) and extracellular localization (13 proteins), while down-regulated DEPs were linked to small molecule catabolism. KEGG pathway annotation identified DEP involvement in 124 pathways, including secondary metabolite biosynthesis and membrane transport. These findings demonstrate that ammonium sulfate remodels the Czk1 secretome to enhance the expression of key antagonistic proteins, thereby providing crucial molecular targets and a scientific foundation for developing effective biofungicides against rubber root rot, with clear practical implications for sustainable disease management.
期刊介绍:
Microorganisms (ISSN 2076-2607) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to prokaryotic and eukaryotic microorganisms, viruses and prions. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.