{"title":"Strategic Objectives of Nanotechnology-Driven Repurposing in Radiopharmacy-Implications for Radiopharmaceutical Repurposing (Beyond Oncology).","authors":"María Jimena Salgueiro, Marcela Zubillaga","doi":"10.3390/pharmaceutics17091159","DOIUrl":null,"url":null,"abstract":"<p><p>The integration of nanotechnology into drug repurposing strategies is redefining the development landscape for diagnostic, therapeutic, and theranostic agents. In radiopharmacy, nanoplatforms are increasingly being explored to enhance or extend the use of existing radiopharmaceuticals, complementing earlier applications in other biomedical fields. Many of these nanoplatforms evolve into multifunctional systems by incorporating additional imaging modalities (e.g., MRI, fluorescence) or non-radioactive therapies (e.g., photodynamic therapy, chemotherapy). These hybrid constructs often emerge from the reformulation, repositioning, or revival of previously approved or abandoned compounds, generating entities with novel pharmacological, pharmacokinetic, and biodistribution profiles. However, their translational potential faces significant regulatory hurdles. Existing frameworks-typically designed for single-modality drugs or devices-struggle to accommodate the combined complexity of nanoengineering, radioactive components, and integrated functionalities. This review examines how these systems challenge current norms in classification, safety assessment, preclinical modeling, and regulatory coordination. It also addresses emerging concerns around digital adjuncts such as AI-assisted dosimetry and software-based therapy planning. Finally, the article outlines international initiatives aimed at closing regulatory gaps and provides future directions for building harmonized, risk-adapted frameworks that support innovation while ensuring safety and efficacy.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":"17 9","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473654/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pharmaceutics17091159","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
The integration of nanotechnology into drug repurposing strategies is redefining the development landscape for diagnostic, therapeutic, and theranostic agents. In radiopharmacy, nanoplatforms are increasingly being explored to enhance or extend the use of existing radiopharmaceuticals, complementing earlier applications in other biomedical fields. Many of these nanoplatforms evolve into multifunctional systems by incorporating additional imaging modalities (e.g., MRI, fluorescence) or non-radioactive therapies (e.g., photodynamic therapy, chemotherapy). These hybrid constructs often emerge from the reformulation, repositioning, or revival of previously approved or abandoned compounds, generating entities with novel pharmacological, pharmacokinetic, and biodistribution profiles. However, their translational potential faces significant regulatory hurdles. Existing frameworks-typically designed for single-modality drugs or devices-struggle to accommodate the combined complexity of nanoengineering, radioactive components, and integrated functionalities. This review examines how these systems challenge current norms in classification, safety assessment, preclinical modeling, and regulatory coordination. It also addresses emerging concerns around digital adjuncts such as AI-assisted dosimetry and software-based therapy planning. Finally, the article outlines international initiatives aimed at closing regulatory gaps and provides future directions for building harmonized, risk-adapted frameworks that support innovation while ensuring safety and efficacy.
PharmaceuticsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
7.90
自引率
11.10%
发文量
2379
审稿时长
16.41 days
期刊介绍:
Pharmaceutics (ISSN 1999-4923) is an open access journal which provides an advanced forum for the science and technology of pharmaceutics and biopharmaceutics. It publishes reviews, regular research papers, communications, and short notes. Covered topics include pharmacokinetics, toxicokinetics, pharmacodynamics, pharmacogenetics and pharmacogenomics, and pharmaceutical formulation. Our aim is to encourage scientists to publish their experimental and theoretical details in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.