{"title":"Nanomaterial-Powered Biosensors: A Cutting-Edge Review of Their Versatile Applications.","authors":"Payal Patial, Manish Deshwal, Shonak Bansal, Anjana Sharma, Kamaldeep Kaur, Krishna Prakash","doi":"10.3390/mi16091042","DOIUrl":null,"url":null,"abstract":"<p><p>Optimal sensing devices exhibit a combination of key performance attributes, including an extensive detection limit, exceptional selectivity, high sensitivity, consistent repeatability, precise measurement, and rapid response times with efficient analyte flow. In recent years, biosensing platforms incorporating nanoscale materials have garnered considerable attention due to their diverse applications across various scientific and technological domains. The integration of nanoparticles (NPs) in biosensor design primarily bridges the dimensional gap between the signal transduction element and the biological recognition component, both of which operate at nanometer scales. The synergistic combination of NPs with electrochemical techniques has facilitated the development of biosensors characterized by enhanced sensitivity and superior analyte discrimination capabilities. This comprehensive analysis examines the evolution and recent advancements in nanomaterial (NM)-based biosensors, encompassing an extensive array of nanostructures. These consists of one-dimensional nanostructures including carbon nanotubes (CNTs), nanowires (NWs), nanorods (NRs), and quantum dots (QDs), as well as noble metal and metal and metal oxide nanoparticles (NPs). The article examines how advancements in biosensing techniques across a range of applications have been fueled by the growth of nanotechnology. Researchers have significantly improved biosensor performance parameters by utilizing the distinct physiochemical properties of these NMs. The developments have increased the potential uses of nanobiosensors in a wide range of fields, from food safety and biodefense to medical diagnostics and environmental monitoring. The continuous developments in NM-based biosensors are the result of the integration of several scientific areas, such as analytical chemistry, materials science, and biotechnology. This interdisciplinary approach continues to drive innovations in sensor design, signal amplification strategies, and data analysis techniques, ultimately leading to more sophisticated and capable biosensing platforms. As the field progresses, challenges related to the scalability, reproducibility, and long-term stability of nanobiosensors are being addressed through innovative fabrication methods and surface modification techniques. These efforts aim to translate the promising results observed in laboratory settings into practical, commercially viable biosensing devices that can address real-world analytical challenges across various sectors.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 9","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471708/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16091042","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Optimal sensing devices exhibit a combination of key performance attributes, including an extensive detection limit, exceptional selectivity, high sensitivity, consistent repeatability, precise measurement, and rapid response times with efficient analyte flow. In recent years, biosensing platforms incorporating nanoscale materials have garnered considerable attention due to their diverse applications across various scientific and technological domains. The integration of nanoparticles (NPs) in biosensor design primarily bridges the dimensional gap between the signal transduction element and the biological recognition component, both of which operate at nanometer scales. The synergistic combination of NPs with electrochemical techniques has facilitated the development of biosensors characterized by enhanced sensitivity and superior analyte discrimination capabilities. This comprehensive analysis examines the evolution and recent advancements in nanomaterial (NM)-based biosensors, encompassing an extensive array of nanostructures. These consists of one-dimensional nanostructures including carbon nanotubes (CNTs), nanowires (NWs), nanorods (NRs), and quantum dots (QDs), as well as noble metal and metal and metal oxide nanoparticles (NPs). The article examines how advancements in biosensing techniques across a range of applications have been fueled by the growth of nanotechnology. Researchers have significantly improved biosensor performance parameters by utilizing the distinct physiochemical properties of these NMs. The developments have increased the potential uses of nanobiosensors in a wide range of fields, from food safety and biodefense to medical diagnostics and environmental monitoring. The continuous developments in NM-based biosensors are the result of the integration of several scientific areas, such as analytical chemistry, materials science, and biotechnology. This interdisciplinary approach continues to drive innovations in sensor design, signal amplification strategies, and data analysis techniques, ultimately leading to more sophisticated and capable biosensing platforms. As the field progresses, challenges related to the scalability, reproducibility, and long-term stability of nanobiosensors are being addressed through innovative fabrication methods and surface modification techniques. These efforts aim to translate the promising results observed in laboratory settings into practical, commercially viable biosensing devices that can address real-world analytical challenges across various sectors.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.