{"title":"A Novel Motion Platform Based on Dual Driving Feet Linear Ultrasonic Motor.","authors":"Yue Jian, Zhen Liu, Ping Yao, Wenjie Zhou, Junfeng He, Huazhuo Liang","doi":"10.3390/mi16091039","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a novel motion platform based on a π-shaped linear ultrasonic motor. Initially, a new preload device was designed in accordance with established criteria for high-power linear ultrasonic motors. Mounted on the base structure, this mechanism neither interferes with the stator's high-frequency vibrations nor couples with the mover's motion. Structural parameters were determined through theoretical modeling, while experimental validation confirmed the mechanism's capability to deliver stable and appropriate preload throughout the motor's complete operating cycle, thereby enhancing the platform's operational stability and positioning accuracy. Subsequently, a novel mover was developed by replacing linear guides with a ceramic-ceramic mechanism. This mover features a compact structure and flexible design, facilitating both miniaturization and effective stroke amplification. The resulting platform achieves a 40% reduction in volume compared to conventional designs while extending the stroke to 150% of the original capacity. Finally, a prototype was fabricated and experimentally evaluated. Test results demonstrate output velocities exceeding 200 mm/s in both directions, with positioning accuracy reaching 1.1 μm.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 9","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471605/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16091039","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a novel motion platform based on a π-shaped linear ultrasonic motor. Initially, a new preload device was designed in accordance with established criteria for high-power linear ultrasonic motors. Mounted on the base structure, this mechanism neither interferes with the stator's high-frequency vibrations nor couples with the mover's motion. Structural parameters were determined through theoretical modeling, while experimental validation confirmed the mechanism's capability to deliver stable and appropriate preload throughout the motor's complete operating cycle, thereby enhancing the platform's operational stability and positioning accuracy. Subsequently, a novel mover was developed by replacing linear guides with a ceramic-ceramic mechanism. This mover features a compact structure and flexible design, facilitating both miniaturization and effective stroke amplification. The resulting platform achieves a 40% reduction in volume compared to conventional designs while extending the stroke to 150% of the original capacity. Finally, a prototype was fabricated and experimentally evaluated. Test results demonstrate output velocities exceeding 200 mm/s in both directions, with positioning accuracy reaching 1.1 μm.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.