Ciprian-Dumitru Ciofu, Petronela-Daniela Rusu Ostahie, Marcin Adamiak, Oktawian Bialas, Catalin Tampu, Panagiotis Kyratsis, Anastasios Tzotzis, Simona-Nicoleta Mazurchevici, Alexandra Nedelcu, Zhengyi Jiang, Daniel Mindru, Dumitru Nedelcu
{"title":"Wettability, Tribology, Degradation, and Topography of Laser-Textured Surfaces of Biopolymers.","authors":"Ciprian-Dumitru Ciofu, Petronela-Daniela Rusu Ostahie, Marcin Adamiak, Oktawian Bialas, Catalin Tampu, Panagiotis Kyratsis, Anastasios Tzotzis, Simona-Nicoleta Mazurchevici, Alexandra Nedelcu, Zhengyi Jiang, Daniel Mindru, Dumitru Nedelcu","doi":"10.3390/mi16091009","DOIUrl":null,"url":null,"abstract":"<p><p>Surface texturing involves creating micro-channels, micro-dimples, micro-grooving, and other surface modifications. To do this, laser and micromachining are employed on the substrate surface in addition to other methods. The surface characteristics of the Arboblend V2 Nature biodegradable polymers with laser texturing, hexagonal and square patterns, and four and six passes are shown in this study. Regardless of the texture type, Arboblend V2 Nature's hydrophilic surface (a contact angle of less than 90°) was demonstrated by the results of the wettability test. The underlying material's wear behavior changed as a result of the LST surface modification. The COF values increased only after six passes with both textures. On the topographical side, Arboblend V2 Nature (square and hexagonal) shows a consistent X-axis expansion in the hexagonal geometry and a considerable amount of variability in the square geometry, especially at six passes, where the Y-axis (higher depths) is more compressed. According to the results, since textured surfaces are practicable, non-biodegradable polymers from a variety of industries can be substituted.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 9","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472178/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16091009","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Surface texturing involves creating micro-channels, micro-dimples, micro-grooving, and other surface modifications. To do this, laser and micromachining are employed on the substrate surface in addition to other methods. The surface characteristics of the Arboblend V2 Nature biodegradable polymers with laser texturing, hexagonal and square patterns, and four and six passes are shown in this study. Regardless of the texture type, Arboblend V2 Nature's hydrophilic surface (a contact angle of less than 90°) was demonstrated by the results of the wettability test. The underlying material's wear behavior changed as a result of the LST surface modification. The COF values increased only after six passes with both textures. On the topographical side, Arboblend V2 Nature (square and hexagonal) shows a consistent X-axis expansion in the hexagonal geometry and a considerable amount of variability in the square geometry, especially at six passes, where the Y-axis (higher depths) is more compressed. According to the results, since textured surfaces are practicable, non-biodegradable polymers from a variety of industries can be substituted.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.