Dhanbir Lingden, Preston Willis, Jay K Bhattarai, Keith J Stine
{"title":"Nanoporous Gold Nanoparticles-Modified Electrode for the Detection of Endotoxins.","authors":"Dhanbir Lingden, Preston Willis, Jay K Bhattarai, Keith J Stine","doi":"10.3390/mi16091014","DOIUrl":null,"url":null,"abstract":"<p><p>Nanoporous gold nanoparticles (np-AuNPs) combine inertness, a nanoscale structure, and a porous framework with high surface area, conductivity, and biocompatibility, making them ideal for biosensing, catalysis, fuel cells, and drug delivery. Their open pore structure and low-coordinated atoms enhance biomolecule capture and mass transfer, while their tunable size, pore volume, and ease of surface modification make them promising biosensor transducers. However, synthesizing colloidal np-AuNPs in a simple way with controllable size and scalability remains challenging. The existing approaches mostly rely on specialized equipment, complex setups, and expert knowledge, while still facing challenges in terms of scalability. In this study, we present a simple, seedless, wet-chemical synthesis of colloidal np-AuNPs via the co-reduction of Au/Ag alloys followed by dealloying. By adjusting the Au:Ag ratio, we produced np-AuNPs sized ~120-530 nm, which were immobilized on electrodes for detecting lipopolysaccharide (LPS), a toxic component of Gram-negative bacterial membranes. The LPS biosensor exhibited excellent sensitivity towards detecting wild-type LPS, with a low limit of detection (LOD) of 0.1244 ng/L. This work demonstrates the effective synthesis and application of np-AuNPs in LPS biosensing.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 9","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471410/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16091014","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Nanoporous gold nanoparticles (np-AuNPs) combine inertness, a nanoscale structure, and a porous framework with high surface area, conductivity, and biocompatibility, making them ideal for biosensing, catalysis, fuel cells, and drug delivery. Their open pore structure and low-coordinated atoms enhance biomolecule capture and mass transfer, while their tunable size, pore volume, and ease of surface modification make them promising biosensor transducers. However, synthesizing colloidal np-AuNPs in a simple way with controllable size and scalability remains challenging. The existing approaches mostly rely on specialized equipment, complex setups, and expert knowledge, while still facing challenges in terms of scalability. In this study, we present a simple, seedless, wet-chemical synthesis of colloidal np-AuNPs via the co-reduction of Au/Ag alloys followed by dealloying. By adjusting the Au:Ag ratio, we produced np-AuNPs sized ~120-530 nm, which were immobilized on electrodes for detecting lipopolysaccharide (LPS), a toxic component of Gram-negative bacterial membranes. The LPS biosensor exhibited excellent sensitivity towards detecting wild-type LPS, with a low limit of detection (LOD) of 0.1244 ng/L. This work demonstrates the effective synthesis and application of np-AuNPs in LPS biosensing.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.