Material Removal on Hydrogen-Terminated Diamond Surface via AFM Tip-Based Local Anodic Oxidation.

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Micromachines Pub Date : 2025-08-26 DOI:10.3390/mi16090981
Jinyan Tang, Zhong-Hao Cao, Zhongwei Li, Yuan-Liu Chen
{"title":"Material Removal on Hydrogen-Terminated Diamond Surface via AFM Tip-Based Local Anodic Oxidation.","authors":"Jinyan Tang, Zhong-Hao Cao, Zhongwei Li, Yuan-Liu Chen","doi":"10.3390/mi16090981","DOIUrl":null,"url":null,"abstract":"<p><p>Diamond is a promising next-generation semiconductor material, offering a wider band gap, higher electron mobility, and superior thermal conductivity compared with silicon. However, its exceptional hardness makes it challenging to fabricate. In this study, we demonstrate a novel approach to realize material removal on hydrogen-terminated diamond surfaces by atomic force microscope (AFM) tip-based local anodic oxidation. By adjusting both the applied voltage and hydrogen plasma etching parameters, the material is removed over an area larger than the AFM tip size. Notably, the hardness of the material surrounding the removal zone is significantly reduced, enabling it to be scratched with a silicon tip. These findings open a promising pathway for improving the machinability of diamonds in future device applications.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 9","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471924/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16090981","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Diamond is a promising next-generation semiconductor material, offering a wider band gap, higher electron mobility, and superior thermal conductivity compared with silicon. However, its exceptional hardness makes it challenging to fabricate. In this study, we demonstrate a novel approach to realize material removal on hydrogen-terminated diamond surfaces by atomic force microscope (AFM) tip-based local anodic oxidation. By adjusting both the applied voltage and hydrogen plasma etching parameters, the material is removed over an area larger than the AFM tip size. Notably, the hardness of the material surrounding the removal zone is significantly reduced, enabling it to be scratched with a silicon tip. These findings open a promising pathway for improving the machinability of diamonds in future device applications.

Abstract Image

Abstract Image

Abstract Image

基于AFM尖端的局部阳极氧化法去除端氢金刚石表面的材料。
金刚石是一种很有前途的下一代半导体材料,与硅相比,它具有更宽的带隙、更高的电子迁移率和更优越的导热性。然而,其特殊的硬度使其难以制造。在这项研究中,我们展示了一种新的方法,通过原子力显微镜(AFM)尖端局部阳极氧化来实现在端氢金刚石表面的材料去除。通过调节施加的电压和氢等离子体蚀刻参数,材料被去除的面积大于AFM尖端的尺寸。值得注意的是,去除区周围材料的硬度显着降低,使其能够用硅尖端划伤。这些发现为在未来的器件应用中提高金刚石的可加工性开辟了一条有希望的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信