Multi-Level Scale Attention Fusion Network for Adhesive Spots Segmentation in Microlens Packaging.

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Micromachines Pub Date : 2025-09-11 DOI:10.3390/mi16091043
Yixiong Yan, Sijia Chen, Lian Duan, Dinghui Luo, Fan Zhang, Shunshun Zhong
{"title":"Multi-Level Scale Attention Fusion Network for Adhesive Spots Segmentation in Microlens Packaging.","authors":"Yixiong Yan, Sijia Chen, Lian Duan, Dinghui Luo, Fan Zhang, Shunshun Zhong","doi":"10.3390/mi16091043","DOIUrl":null,"url":null,"abstract":"<p><p>The demand for high-quality beams from high-power lasers has led to the need for high-precision inspection of adhesion points for collimating lens packages. In this paper, we propose a Multi-Level Scale Attention Fusion Network (MLSAFNet) by fusing a Multi-Level Attention Module (MLAM) and a Multi-Scale Channel-Guided Module (MSCGM) to achieve highly accurate and robust adhesive spots detection. Additionally, we built a Laser Lens Adhesive Spots (LLAS) dataset using automated lens packaging equipment and performed pixel-by-pixel standardization for the first time. Extensive experimental results show that the mean intersection over union (mIoU) of MLSAFNet reaches 91.15%, and its maximum values of localization error and area measurement error are 21.83 μm and 0.003 mm<sup>2</sup>, respectively, which are better than other target detection methods.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 9","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471493/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16091043","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The demand for high-quality beams from high-power lasers has led to the need for high-precision inspection of adhesion points for collimating lens packages. In this paper, we propose a Multi-Level Scale Attention Fusion Network (MLSAFNet) by fusing a Multi-Level Attention Module (MLAM) and a Multi-Scale Channel-Guided Module (MSCGM) to achieve highly accurate and robust adhesive spots detection. Additionally, we built a Laser Lens Adhesive Spots (LLAS) dataset using automated lens packaging equipment and performed pixel-by-pixel standardization for the first time. Extensive experimental results show that the mean intersection over union (mIoU) of MLSAFNet reaches 91.15%, and its maximum values of localization error and area measurement error are 21.83 μm and 0.003 mm2, respectively, which are better than other target detection methods.

微透镜封装中粘着点分割的多级注意融合网络。
对高功率激光器的高质量光束的需求导致了对准直透镜封装附着点的高精度检测的需要。本文提出了一种多层次注意力融合网络(MLSAFNet),该网络通过融合多层次注意力模块(MLAM)和多尺度通道引导模块(MSCGM)来实现高精度和鲁棒的粘着点检测。此外,我们使用自动透镜封装设备建立了激光透镜粘附点(LLAS)数据集,并首次进行逐像素标准化。大量实验结果表明,MLSAFNet的平均交联率(mIoU)达到91.15%,定位误差和面积测量误差的最大值分别为21.83 μm和0.003 mm2,优于其他目标检测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信