{"title":"Investigation of Scribing Parameters' Influence on the Tomography and Crack Initiation of OLED Display Panels for Circular Structures.","authors":"Huaye Kong, Xijing Zhu, Guohong Li, Yao Liu","doi":"10.3390/mi16091071","DOIUrl":null,"url":null,"abstract":"<p><p>This paper focuses on the scoring-wheel cutting process for circular structures of OLED display panels, conducting in-depth research through an experiment-analysis-optimization system. Based on the Taguchi experimental design, a three-factor, five-level experiment is conducted, with the blade wheel angle (A), cutting speed (B), and pressure (C) set as influencing factors, and the scratch depth (h), width (w), median crack depth (l), and transverse crack width (d) set as evaluation indicators. The experiments are carried out using a self-developed dicing-wheel cutting device, and the morphology, roughness, and hardness of the cutting surface and cross-section are characterized by means of ultra-depth-of-field microscopy, laser confocal microscopy, microhardness tester, and other equipment. The research shows that the order of factors affecting the cutting quality is as follows: A > C > B. Through the analysis of morphology and crack characteristics, it is determined that the optimal parameter combination is a dicing wheel angle of 130°, a cutting speed of 20 mm/s, and a pressure of 11 N. The verification results indicate that this combination can reduce surface roughness, stabilize hardness, and realize efficient and precise processing of special-shaped structures in OLED display panels, providing strong theoretical and technical support for industrial process optimization.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 9","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471608/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16091071","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper focuses on the scoring-wheel cutting process for circular structures of OLED display panels, conducting in-depth research through an experiment-analysis-optimization system. Based on the Taguchi experimental design, a three-factor, five-level experiment is conducted, with the blade wheel angle (A), cutting speed (B), and pressure (C) set as influencing factors, and the scratch depth (h), width (w), median crack depth (l), and transverse crack width (d) set as evaluation indicators. The experiments are carried out using a self-developed dicing-wheel cutting device, and the morphology, roughness, and hardness of the cutting surface and cross-section are characterized by means of ultra-depth-of-field microscopy, laser confocal microscopy, microhardness tester, and other equipment. The research shows that the order of factors affecting the cutting quality is as follows: A > C > B. Through the analysis of morphology and crack characteristics, it is determined that the optimal parameter combination is a dicing wheel angle of 130°, a cutting speed of 20 mm/s, and a pressure of 11 N. The verification results indicate that this combination can reduce surface roughness, stabilize hardness, and realize efficient and precise processing of special-shaped structures in OLED display panels, providing strong theoretical and technical support for industrial process optimization.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.