{"title":"Study on the Loss and Characteristics of Giant Magnetostrictive Transducers.","authors":"Qiang Liu, Xiping He, Weiguo Wang, Yanning Yang","doi":"10.3390/mi16090982","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this work is to enable the giant magnetostrictive transducer to work efficiently. In this work, the finite element method was used to carry out a dynamic analysis and magnetic analysis of the transducers of GMM rods with different structures, and the transducers of three structural rods were developed, and the output amplitude and impedance of the three transducers were experimentally tested. The results show that the stress of the rod near the end of the tail mass was larger than that near the end of the head mass. The eddy current and hysteresis losses of the transducer were mainly concentrated on the outer diameter surface of the rod, near the cutting slit, and near the connection between the slices. In addition, there is a certain amount of eddy current loss on the magnetic conductor, permanent magnet, and coil. In the transducer with the untreated rod, the resistance and inductance were the smallest. The inductance of the transducers with the sliced rods were greater than those in the transducers with the slit rods. The transducer with the untreated rod has the highest resonant frequency and the smallest output amplitude, the resonant frequency of the transducers with the sliced rods was lower than that of the transducers with the slit rods, while the output amplitude of the transducers with the sliced rods was greater than that of the transducers with the slit rods. The simulated values of the resonant frequency, output amplitude, resistance, and inductance of the transducers of the three structural rods were basically consistent with the tested values.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 9","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471911/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16090982","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The purpose of this work is to enable the giant magnetostrictive transducer to work efficiently. In this work, the finite element method was used to carry out a dynamic analysis and magnetic analysis of the transducers of GMM rods with different structures, and the transducers of three structural rods were developed, and the output amplitude and impedance of the three transducers were experimentally tested. The results show that the stress of the rod near the end of the tail mass was larger than that near the end of the head mass. The eddy current and hysteresis losses of the transducer were mainly concentrated on the outer diameter surface of the rod, near the cutting slit, and near the connection between the slices. In addition, there is a certain amount of eddy current loss on the magnetic conductor, permanent magnet, and coil. In the transducer with the untreated rod, the resistance and inductance were the smallest. The inductance of the transducers with the sliced rods were greater than those in the transducers with the slit rods. The transducer with the untreated rod has the highest resonant frequency and the smallest output amplitude, the resonant frequency of the transducers with the sliced rods was lower than that of the transducers with the slit rods, while the output amplitude of the transducers with the sliced rods was greater than that of the transducers with the slit rods. The simulated values of the resonant frequency, output amplitude, resistance, and inductance of the transducers of the three structural rods were basically consistent with the tested values.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.