{"title":"Photocatalytic Hydrogen Production Performance of ZnCdS/CoWO<sub>4</sub> Heterojunctions in the Reforming of Lignin Model Compounds.","authors":"Jianxu Zhang, Jingwei Li, Weisheng Guan","doi":"10.3390/ma18184401","DOIUrl":null,"url":null,"abstract":"<p><p>Biomass reforming under mild conditions for synergistic hydrogen production, driven by renewable solar energy, has rapidly emerged as a promising strategy that not only enables the efficient reutilization of biomass but also facilitates the generation of high-purity hydrogen. In this work, ZnCdS (ZCS) nanoparticles and CoWO<sub>4</sub> (CW) nanocrystals were assembled via a solvothermal method to construct a ZCS/CW S-type heterojunction composite. The resultant materials' physicochemical characteristics were methodically described. With lignin model compounds (PP-ol) and sodium lignosulfonate as substrates, the ZnCdS/CoWO<sub>4</sub>-10% catalyst demonstrated a significant generation of hydrogen activity, producing hydrogen at rates of 223.30 μmol·g<sup>-1</sup>·h<sup>-1</sup> and 140.28 μmol·g<sup>-1</sup>·h<sup>-1</sup>, respectively, according to experimental results. The formation of heterojunctions endows composite photocatalysts with higher hydrogen evolution rates compared to single-component catalysts. This is attributed to energy band bending at the interface of the heterojunction, which facilitates efficient charge separation while maintaining strong redox capabilities. High-value compounds like phenol and acetophenone were formed when the oxidation products in the post-reaction lignin model compound solution were subsequently analyzed using high-performance liquid chromatography. Additionally, a convincing mechanism for the catalytic reaction was suggested. It is expected that this study will offer a viable route for the creation of effective photocatalytic materials, high-value organic waste transformation, and sustainable hydrogen production.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 18","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471888/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18184401","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Biomass reforming under mild conditions for synergistic hydrogen production, driven by renewable solar energy, has rapidly emerged as a promising strategy that not only enables the efficient reutilization of biomass but also facilitates the generation of high-purity hydrogen. In this work, ZnCdS (ZCS) nanoparticles and CoWO4 (CW) nanocrystals were assembled via a solvothermal method to construct a ZCS/CW S-type heterojunction composite. The resultant materials' physicochemical characteristics were methodically described. With lignin model compounds (PP-ol) and sodium lignosulfonate as substrates, the ZnCdS/CoWO4-10% catalyst demonstrated a significant generation of hydrogen activity, producing hydrogen at rates of 223.30 μmol·g-1·h-1 and 140.28 μmol·g-1·h-1, respectively, according to experimental results. The formation of heterojunctions endows composite photocatalysts with higher hydrogen evolution rates compared to single-component catalysts. This is attributed to energy band bending at the interface of the heterojunction, which facilitates efficient charge separation while maintaining strong redox capabilities. High-value compounds like phenol and acetophenone were formed when the oxidation products in the post-reaction lignin model compound solution were subsequently analyzed using high-performance liquid chromatography. Additionally, a convincing mechanism for the catalytic reaction was suggested. It is expected that this study will offer a viable route for the creation of effective photocatalytic materials, high-value organic waste transformation, and sustainable hydrogen production.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.