Transmissibility of Clade IIb Monkeypox Virus in Young Rabbits.

IF 4.2 2区 生物学 Q2 MICROBIOLOGY
Zhaoliang Chen, Lei Zhang, Linzhi Li, Mingjie Shao, Mingda Zhang, Zongzheng Zhao, Chao Shang, Zirui Liu, Juxiang Liu, Zhendong Guo
{"title":"Transmissibility of Clade IIb Monkeypox Virus in Young Rabbits.","authors":"Zhaoliang Chen, Lei Zhang, Linzhi Li, Mingjie Shao, Mingda Zhang, Zongzheng Zhao, Chao Shang, Zirui Liu, Juxiang Liu, Zhendong Guo","doi":"10.3390/microorganisms13092182","DOIUrl":null,"url":null,"abstract":"<p><p>The monkeypox virus (MPXV) has spread globally, posing a severe challenge to global public health. This study systematically evaluated the aerosol shedding dynamics of the epidemic Clade IIb MPXV strain in infected young rabbits, along with its direct contact and airborne transmission potential among them. We found that young rabbits could be experimentally infected with MPXV, exhibiting distinct pathogenic features and viral shedding patterns. Young rabbits infected with MPXV shed the virus through nasal secretions and exhaled aerosols, peaking at 7 dpi. In total, 89-95.8% of virus-laden respiratory particles had a diameter ≥4.7 μm. Notably, MPXV can be efficiently shed and transferred among young rabbits through direct contact and airborne routes. The nasal secretions and exhaled virus particles from donor rabbits can be contacted or inhaled by recipient rabbits. Large amounts of viral DNA were detected in the nasal wash of rabbits exposed to contact or airborne exposure. Furthermore, virus particles invade the lungs, causing pathological changes and disseminating them to multiple organs. However, no infectious virus was successfully recovered from these recipient rabbits, as their exposed or inhaled MPXV dose might have been below the MPXV's minimum infectious dose for young rabbits. These findings indicate that although the airborne transmissibility of the current MPXV strain is relatively limited, inhalation of viral particles following airborne exposure can still result in bodily damage. Continuous monitoring of MPXV transmissibility and mutation evolution is imperative to prevent efficient respiratory aerosol transmission, which guides global monkeypox prevention and control strategies.</p>","PeriodicalId":18667,"journal":{"name":"Microorganisms","volume":"13 9","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472869/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microorganisms","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/microorganisms13092182","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The monkeypox virus (MPXV) has spread globally, posing a severe challenge to global public health. This study systematically evaluated the aerosol shedding dynamics of the epidemic Clade IIb MPXV strain in infected young rabbits, along with its direct contact and airborne transmission potential among them. We found that young rabbits could be experimentally infected with MPXV, exhibiting distinct pathogenic features and viral shedding patterns. Young rabbits infected with MPXV shed the virus through nasal secretions and exhaled aerosols, peaking at 7 dpi. In total, 89-95.8% of virus-laden respiratory particles had a diameter ≥4.7 μm. Notably, MPXV can be efficiently shed and transferred among young rabbits through direct contact and airborne routes. The nasal secretions and exhaled virus particles from donor rabbits can be contacted or inhaled by recipient rabbits. Large amounts of viral DNA were detected in the nasal wash of rabbits exposed to contact or airborne exposure. Furthermore, virus particles invade the lungs, causing pathological changes and disseminating them to multiple organs. However, no infectious virus was successfully recovered from these recipient rabbits, as their exposed or inhaled MPXV dose might have been below the MPXV's minimum infectious dose for young rabbits. These findings indicate that although the airborne transmissibility of the current MPXV strain is relatively limited, inhalation of viral particles following airborne exposure can still result in bodily damage. Continuous monitoring of MPXV transmissibility and mutation evolution is imperative to prevent efficient respiratory aerosol transmission, which guides global monkeypox prevention and control strategies.

ⅱb支猴痘病毒在幼兔中的传播性。
猴痘病毒(MPXV)已在全球传播,对全球公共卫生构成严重挑战。本研究系统评估了流行支枝IIb MPXV毒株在受感染幼兔体内的气溶胶脱落动力学,以及其在幼兔之间的直接接触和空气传播潜力。我们发现幼兔可以实验性感染MPXV,表现出明显的致病特征和病毒脱落模式。感染MPXV的幼兔通过鼻腔分泌物和呼出的气溶胶传播病毒,峰值为7 dpi。89 ~ 95.8%的呼吸道病毒颗粒直径≥4.7 μm。值得注意的是,MPXV可以通过直接接触和空气传播途径在幼兔中有效地脱落和传播。供兔的鼻分泌物和呼出的病毒颗粒可被供兔接触或吸入。在接触或空气接触的兔子的鼻洗液中检测到大量病毒DNA。此外,病毒颗粒侵入肺部,引起病理改变并扩散到多个器官。然而,没有感染病毒成功地从这些受体兔身上恢复,因为它们暴露或吸入的MPXV剂量可能低于MPXV对幼兔的最低感染剂量。这些发现表明,尽管目前MPXV菌株的空气传播能力相对有限,但在空气暴露后吸入病毒颗粒仍可导致身体损伤。持续监测猴痘病毒的传播能力和突变进化是防止呼吸道气溶胶有效传播的必要条件,这将指导全球猴痘预防和控制战略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microorganisms
Microorganisms Medicine-Microbiology (medical)
CiteScore
7.40
自引率
6.70%
发文量
2168
审稿时长
20.03 days
期刊介绍: Microorganisms (ISSN 2076-2607) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to prokaryotic and eukaryotic microorganisms, viruses and prions. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信