{"title":"Development and Test of a Novel High-Precision Inchworm Piezoelectric Motor.","authors":"Nan Huang, Jiahao Yin, Fuyuan Feng, Lanyu Zhang, Yuheng Luo, Jian Gao","doi":"10.3390/mi16090992","DOIUrl":null,"url":null,"abstract":"<p><p>The inchworm piezoelectric motor, with the advantages of long stroke and high resolution, is ideally suited for precise positioning in wafer-level electron beam inspection systems. However, the large number of piezoelectric actuators and the complex excitation signal sequences significantly increase the complexity of system assembly and temporal control. A flexure-based actuation stator structure, along with simplified excitation signal sequences of a high-precision inchworm piezoelectric motor, is proposed. The alternating actuation of upper/lower clamping mechanisms and the driving mechanism fundamentally mitigates backstep effects while generating stepping linear displacement. The inchworm piezoelectric motor achieves precision linear motion operation using only two piezoelectric actuators. The actuation stator is analyzed via the compliance matrix method to derive its output compliance, input stiffness, and displacement amplification ratio. Furthermore, a kinematic model and natural frequency expression incorporating the pseudo-rigid-body method and Lagrange's equations are established. The actuation stator and inchworm piezoelectric motor are analyzed through both simulations and experiments. The results show that the maximum step displacement of the motor is 16.3 μm, and the maximum speed is 9.78 mm/s, at a 600 Hz operation frequency with a combined alternating piezoelectric voltage of 135 V and 65 V. These findings validate the designed piezoelectric motor's superior motion resolution, operational stability, and acceptable load capacity.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 9","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472064/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16090992","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The inchworm piezoelectric motor, with the advantages of long stroke and high resolution, is ideally suited for precise positioning in wafer-level electron beam inspection systems. However, the large number of piezoelectric actuators and the complex excitation signal sequences significantly increase the complexity of system assembly and temporal control. A flexure-based actuation stator structure, along with simplified excitation signal sequences of a high-precision inchworm piezoelectric motor, is proposed. The alternating actuation of upper/lower clamping mechanisms and the driving mechanism fundamentally mitigates backstep effects while generating stepping linear displacement. The inchworm piezoelectric motor achieves precision linear motion operation using only two piezoelectric actuators. The actuation stator is analyzed via the compliance matrix method to derive its output compliance, input stiffness, and displacement amplification ratio. Furthermore, a kinematic model and natural frequency expression incorporating the pseudo-rigid-body method and Lagrange's equations are established. The actuation stator and inchworm piezoelectric motor are analyzed through both simulations and experiments. The results show that the maximum step displacement of the motor is 16.3 μm, and the maximum speed is 9.78 mm/s, at a 600 Hz operation frequency with a combined alternating piezoelectric voltage of 135 V and 65 V. These findings validate the designed piezoelectric motor's superior motion resolution, operational stability, and acceptable load capacity.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.