Development and Test of a Novel High-Precision Inchworm Piezoelectric Motor.

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Micromachines Pub Date : 2025-08-29 DOI:10.3390/mi16090992
Nan Huang, Jiahao Yin, Fuyuan Feng, Lanyu Zhang, Yuheng Luo, Jian Gao
{"title":"Development and Test of a Novel High-Precision Inchworm Piezoelectric Motor.","authors":"Nan Huang, Jiahao Yin, Fuyuan Feng, Lanyu Zhang, Yuheng Luo, Jian Gao","doi":"10.3390/mi16090992","DOIUrl":null,"url":null,"abstract":"<p><p>The inchworm piezoelectric motor, with the advantages of long stroke and high resolution, is ideally suited for precise positioning in wafer-level electron beam inspection systems. However, the large number of piezoelectric actuators and the complex excitation signal sequences significantly increase the complexity of system assembly and temporal control. A flexure-based actuation stator structure, along with simplified excitation signal sequences of a high-precision inchworm piezoelectric motor, is proposed. The alternating actuation of upper/lower clamping mechanisms and the driving mechanism fundamentally mitigates backstep effects while generating stepping linear displacement. The inchworm piezoelectric motor achieves precision linear motion operation using only two piezoelectric actuators. The actuation stator is analyzed via the compliance matrix method to derive its output compliance, input stiffness, and displacement amplification ratio. Furthermore, a kinematic model and natural frequency expression incorporating the pseudo-rigid-body method and Lagrange's equations are established. The actuation stator and inchworm piezoelectric motor are analyzed through both simulations and experiments. The results show that the maximum step displacement of the motor is 16.3 μm, and the maximum speed is 9.78 mm/s, at a 600 Hz operation frequency with a combined alternating piezoelectric voltage of 135 V and 65 V. These findings validate the designed piezoelectric motor's superior motion resolution, operational stability, and acceptable load capacity.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 9","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472064/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16090992","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The inchworm piezoelectric motor, with the advantages of long stroke and high resolution, is ideally suited for precise positioning in wafer-level electron beam inspection systems. However, the large number of piezoelectric actuators and the complex excitation signal sequences significantly increase the complexity of system assembly and temporal control. A flexure-based actuation stator structure, along with simplified excitation signal sequences of a high-precision inchworm piezoelectric motor, is proposed. The alternating actuation of upper/lower clamping mechanisms and the driving mechanism fundamentally mitigates backstep effects while generating stepping linear displacement. The inchworm piezoelectric motor achieves precision linear motion operation using only two piezoelectric actuators. The actuation stator is analyzed via the compliance matrix method to derive its output compliance, input stiffness, and displacement amplification ratio. Furthermore, a kinematic model and natural frequency expression incorporating the pseudo-rigid-body method and Lagrange's equations are established. The actuation stator and inchworm piezoelectric motor are analyzed through both simulations and experiments. The results show that the maximum step displacement of the motor is 16.3 μm, and the maximum speed is 9.78 mm/s, at a 600 Hz operation frequency with a combined alternating piezoelectric voltage of 135 V and 65 V. These findings validate the designed piezoelectric motor's superior motion resolution, operational stability, and acceptable load capacity.

一种新型高精度尺蠖压电电机的研制与测试。
尺蠖压电电机具有行程长、分辨率高的优点,非常适合在晶圆级电子束检测系统中进行精确定位。然而,大量的压电作动器和复杂的激励信号序列显著增加了系统装配和时间控制的复杂性。提出了一种基于挠性驱动的高精度尺蠖压电电机定子结构及简化的激励信号序列。上下夹持机构与驱动机构交替驱动,从根本上缓解了步进效应,同时产生步进线性位移。尺蠖压电电机仅使用两个压电致动器即可实现精确的直线运动。采用柔度矩阵法对作动定子进行分析,得到其输出柔度、输入刚度和位移放大比。建立了拟刚体法和拉格朗日方程相结合的运动学模型和固有频率表达式。通过仿真和实验对动定子和尺蠖压电电机进行了分析。结果表明:当工作频率为600 Hz,压电交变电压为135 V和65 V时,电机的最大步进位移为16.3 μm,最大速度为9.78 mm/s;这些结果验证了所设计的压电电机具有优越的运动分辨率、运行稳定性和可接受的负载能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信