{"title":"Transcriptome Analysis of <i>Chenopodium album</i> in Response to Infection by <i>Botrytis</i> Strain HZ-011.","authors":"Haixia Zhu, Le Zhang, Yongqiang Ma, Lu Hou","doi":"10.3390/microorganisms13092177","DOIUrl":null,"url":null,"abstract":"<p><p>This study conducted a transcriptome sequencing analysis of the interaction between <i>Chenopodium album</i> and <i>Botrytis</i> strain HZ-011 to identify genes involved in the response to fungal infections and elucidate the molecular mechanisms underlying the interaction. High-throughput RNA-seq technology was employed to analyze the transcriptomes of <i>C. album</i> leaves at 1, 4, and 5 days post-inoculation (dpi) with <i>Botrytis</i> strain HZ-011. The results revealed 11,645 differentially expressed genes (DEGs) at 1 dpi, including 7399 upregulated and 4246 downregulated genes; 11,285 DEGs at 4 dpi (7801 upregulated and 3484 downregulated); and 9976 DEGs at 5 dpi (7723 upregulated and 2253 downregulated). GO functional analysis indicated that downregulated DEGs were significantly enriched in chloroplast and plastid functional expression at 1, 4, and 5 dpi. Following infection by <i>Botrytis</i> strain HZ-011, downregulated genes were significantly enriched in pathways related to photosynthesis, including photosynthetic pathways, light-harvesting antenna proteins, and carotenoid biosynthesis. This suggests that the photosynthetic process in <i>C. album</i> was markedly inhibited, disrupting nutrient supply and leading to herbicidal effects. Notably, genes such as <i>PSB28</i>, <i>PSBP</i>, <i>CAP10A</i>, and <i>CRTL-E-1</i> were significantly enriched in these pathways, indicating their potential roles in the herbicidal mechanism. These findings provide a foundation for understanding the herbicidal activity of strain HZ-011 and identifying potential targets for developing novel microbial herbicides.</p>","PeriodicalId":18667,"journal":{"name":"Microorganisms","volume":"13 9","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472639/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microorganisms","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/microorganisms13092177","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study conducted a transcriptome sequencing analysis of the interaction between Chenopodium album and Botrytis strain HZ-011 to identify genes involved in the response to fungal infections and elucidate the molecular mechanisms underlying the interaction. High-throughput RNA-seq technology was employed to analyze the transcriptomes of C. album leaves at 1, 4, and 5 days post-inoculation (dpi) with Botrytis strain HZ-011. The results revealed 11,645 differentially expressed genes (DEGs) at 1 dpi, including 7399 upregulated and 4246 downregulated genes; 11,285 DEGs at 4 dpi (7801 upregulated and 3484 downregulated); and 9976 DEGs at 5 dpi (7723 upregulated and 2253 downregulated). GO functional analysis indicated that downregulated DEGs were significantly enriched in chloroplast and plastid functional expression at 1, 4, and 5 dpi. Following infection by Botrytis strain HZ-011, downregulated genes were significantly enriched in pathways related to photosynthesis, including photosynthetic pathways, light-harvesting antenna proteins, and carotenoid biosynthesis. This suggests that the photosynthetic process in C. album was markedly inhibited, disrupting nutrient supply and leading to herbicidal effects. Notably, genes such as PSB28, PSBP, CAP10A, and CRTL-E-1 were significantly enriched in these pathways, indicating their potential roles in the herbicidal mechanism. These findings provide a foundation for understanding the herbicidal activity of strain HZ-011 and identifying potential targets for developing novel microbial herbicides.
期刊介绍:
Microorganisms (ISSN 2076-2607) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to prokaryotic and eukaryotic microorganisms, viruses and prions. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.