Ruichen Tian, Aldrin D Calderon, Quanrong Fang, Xiaoyu Liu
{"title":"Data-Driven Optimization and Mechanical Assessment of Perovskite Solar Cells via Stacking Ensemble and SHAP Interpretability.","authors":"Ruichen Tian, Aldrin D Calderon, Quanrong Fang, Xiaoyu Liu","doi":"10.3390/ma18184429","DOIUrl":null,"url":null,"abstract":"<p><p>Perovskite solar cells (PSCs) have emerged as promising photovoltaic technologies owing to their high power conversion efficiency (PCE) and material versatility. Conventional optimization of PSC architectures largely depends on iterative experimental approaches, which are often labor-intensive and time-consuming. In this study, a data-driven modeling strategy is introduced to accelerate the design of efficient and mechanically robust PSCs. Seven supervised regression models were evaluated for predicting key photovoltaic parameters, including PCE, short-circuit current density (Jsc), open-circuit voltage (Voc), and fill factor (FF). Among these, a stacking ensemble framework exhibited superior predictive accuracy, achieving an R<sup>2</sup> of 0.8577 and a root mean square error of 2.084 for PCE prediction. Model interpretability was ensured through Shapley Additive exPlanations(SHAP) analysis, which identified precursor solvent composition, A-site cation ratio, and hole-transport-layer additives as the most influential parameters. Guided by these insights, ten device configurations were fabricated, achieving a maximum PCE of 24.9%, in close agreement with model forecasts. Furthermore, multiscale mechanical assessments, including bending, compression, impact resistance, peeling adhesion, and nanoindentation tests, were conducted to evaluate structural reliability. The optimized device demonstrated enhanced interfacial stability and fracture resistance, validating the proposed predictive-experimental framework. This work establishes a comprehensive approach for performance-oriented and reliability-driven PSC design, providing a foundation for scalable and durable photovoltaic technologies.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 18","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471739/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18184429","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Perovskite solar cells (PSCs) have emerged as promising photovoltaic technologies owing to their high power conversion efficiency (PCE) and material versatility. Conventional optimization of PSC architectures largely depends on iterative experimental approaches, which are often labor-intensive and time-consuming. In this study, a data-driven modeling strategy is introduced to accelerate the design of efficient and mechanically robust PSCs. Seven supervised regression models were evaluated for predicting key photovoltaic parameters, including PCE, short-circuit current density (Jsc), open-circuit voltage (Voc), and fill factor (FF). Among these, a stacking ensemble framework exhibited superior predictive accuracy, achieving an R2 of 0.8577 and a root mean square error of 2.084 for PCE prediction. Model interpretability was ensured through Shapley Additive exPlanations(SHAP) analysis, which identified precursor solvent composition, A-site cation ratio, and hole-transport-layer additives as the most influential parameters. Guided by these insights, ten device configurations were fabricated, achieving a maximum PCE of 24.9%, in close agreement with model forecasts. Furthermore, multiscale mechanical assessments, including bending, compression, impact resistance, peeling adhesion, and nanoindentation tests, were conducted to evaluate structural reliability. The optimized device demonstrated enhanced interfacial stability and fracture resistance, validating the proposed predictive-experimental framework. This work establishes a comprehensive approach for performance-oriented and reliability-driven PSC design, providing a foundation for scalable and durable photovoltaic technologies.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.