Recent Progress of Ion Implantation Technique in GaN-Based Electronic Devices.

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Micromachines Pub Date : 2025-08-29 DOI:10.3390/mi16090999
Hao Lu, Xiaorun Hao, Yichi Zhang, Ling Yang, Bin Hou, Meng Zhang, Mei Wu, Xiaohua Ma, Yue Hao
{"title":"Recent Progress of Ion Implantation Technique in GaN-Based Electronic Devices.","authors":"Hao Lu, Xiaorun Hao, Yichi Zhang, Ling Yang, Bin Hou, Meng Zhang, Mei Wu, Xiaohua Ma, Yue Hao","doi":"10.3390/mi16090999","DOIUrl":null,"url":null,"abstract":"<p><p>Gallium nitride (GaN) offers exceptional material properties, making it indispensable in communications, defense, and power electronics. With high electron mobility and robust thermal conductivity, GaN-based devices excel in high-frequency, high-power applications. They are vital in wireless communication systems, radar, electronic warfare, and power electronics systems, offering superior performance, efficiency, and reliability. Further research is crucial for optimizing GaN-based devices performance and expanding their applications, driving innovation across industries. The application of ion implantation technology in GaN-based devices is a key process that can be used to improve device performance and characteristics, which enables process aspects such as electrical isolation, ion implantation for ohmic contacts, threshold voltage regulation, and terminal design. In this paper, we will focus on reviewing the principles and issues of the ion implantation process in GaN-based device preparation. This work aims to serve as a guide for ion implantation in future GaN-based devices.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 9","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471583/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16090999","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Gallium nitride (GaN) offers exceptional material properties, making it indispensable in communications, defense, and power electronics. With high electron mobility and robust thermal conductivity, GaN-based devices excel in high-frequency, high-power applications. They are vital in wireless communication systems, radar, electronic warfare, and power electronics systems, offering superior performance, efficiency, and reliability. Further research is crucial for optimizing GaN-based devices performance and expanding their applications, driving innovation across industries. The application of ion implantation technology in GaN-based devices is a key process that can be used to improve device performance and characteristics, which enables process aspects such as electrical isolation, ion implantation for ohmic contacts, threshold voltage regulation, and terminal design. In this paper, we will focus on reviewing the principles and issues of the ion implantation process in GaN-based device preparation. This work aims to serve as a guide for ion implantation in future GaN-based devices.

Abstract Image

Abstract Image

Abstract Image

氮化镓基电子器件离子注入技术研究进展。
氮化镓(GaN)具有特殊的材料特性,使其在通信、国防和电力电子领域不可或缺。由于具有高电子迁移率和强大的导热性,gan基器件在高频,高功率应用中表现出色。它们在无线通信系统、雷达、电子战和电力电子系统中至关重要,提供卓越的性能、效率和可靠性。进一步的研究对于优化基于gan的设备性能和扩展其应用,推动跨行业创新至关重要。离子注入技术在氮化镓基器件中的应用是提高器件性能和特性的关键工艺,可实现电隔离、欧姆触点离子注入、阈值电压调节和终端设计等工艺方面的改进。本文将重点回顾氮化镓基器件制备中离子注入过程的原理和问题。这项工作旨在为未来氮化镓基器件的离子注入提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信