Considering the Node Level in Error Correction for DMFBs.

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Micromachines Pub Date : 2025-08-31 DOI:10.3390/mi16091013
Koki Suzuki, Shigeru Yamashita, Hiroyuki Tomiyama, Ankur Gupta
{"title":"Considering the Node Level in Error Correction for DMFBs.","authors":"Koki Suzuki, Shigeru Yamashita, Hiroyuki Tomiyama, Ankur Gupta","doi":"10.3390/mi16091013","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, a type of biochip known as a Digital Microfluidic Biochip (DMFB) has been actively researched in the field of life sciences. DMFBs perform dilution operations by mixing reagent solutions and buffer solutions at a 1:1 ratio to generate droplets with the desired concentration. One of the challenges of DMFBs is that droplets may not always be evenly split during the droplet division process. To address this issue, an error correction method utilizing error cancellation has been proposed. This method modifies the dilution graph to minimize the impact of division errors on the target node. However, this approach has a significant drawback: when large division errors occur in nodes close to the target node, they can introduce substantial concentration errors at the target node. In this paper, we propose a method that duplicates nodes near the target node and performs re-dilution to correct errors. Furthermore, we present an efficient and accurate error correction approach by modifying the dilution graph so that the output nodes of the dilution operation are at equal levels relative to the target node. Through simulations conducted 10,000 times, we demonstrate that our method effectively reduces the average concentration error at the target node.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 9","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471943/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16091013","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, a type of biochip known as a Digital Microfluidic Biochip (DMFB) has been actively researched in the field of life sciences. DMFBs perform dilution operations by mixing reagent solutions and buffer solutions at a 1:1 ratio to generate droplets with the desired concentration. One of the challenges of DMFBs is that droplets may not always be evenly split during the droplet division process. To address this issue, an error correction method utilizing error cancellation has been proposed. This method modifies the dilution graph to minimize the impact of division errors on the target node. However, this approach has a significant drawback: when large division errors occur in nodes close to the target node, they can introduce substantial concentration errors at the target node. In this paper, we propose a method that duplicates nodes near the target node and performs re-dilution to correct errors. Furthermore, we present an efficient and accurate error correction approach by modifying the dilution graph so that the output nodes of the dilution operation are at equal levels relative to the target node. Through simulations conducted 10,000 times, we demonstrate that our method effectively reduces the average concentration error at the target node.

Abstract Image

Abstract Image

Abstract Image

考虑dmfb纠错中的节点级别。
近年来,一种被称为数字微流控生物芯片(DMFB)的生物芯片在生命科学领域得到了积极的研究。dmfb通过以1:1的比例混合试剂溶液和缓冲溶液来进行稀释操作,以产生具有所需浓度的液滴。dmfb面临的挑战之一是,在液滴分裂过程中,液滴可能并不总是均匀分裂。为了解决这一问题,提出了一种利用误差抵消的纠错方法。该方法修改稀释图,使分割误差对目标节点的影响最小化。然而,这种方法有一个明显的缺点:当靠近目标节点的节点出现较大的分割误差时,它们会在目标节点上引入较大的集中误差。在本文中,我们提出了一种方法,即在目标节点附近复制节点并进行重新稀释以纠正误差。此外,我们提出了一种有效而准确的误差修正方法,通过修改稀释图,使稀释操作的输出节点相对于目标节点处于相等的水平。通过10000次的仿真,我们证明了我们的方法有效地降低了目标节点的平均浓度误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信