Human Microbiome as an Immunoregulatory Axis: Mechanisms, Dysbiosis, and Therapeutic Modulation.

IF 4.2 2区 生物学 Q2 MICROBIOLOGY
Matías Cortés, Paula Olate, Rodrigo Rodriguez, Rommy Diaz, Ailín Martínez, Genisley Hernández, Nestor Sepulveda, Erwin A Paz, John Quiñones
{"title":"Human Microbiome as an Immunoregulatory Axis: Mechanisms, Dysbiosis, and Therapeutic Modulation.","authors":"Matías Cortés, Paula Olate, Rodrigo Rodriguez, Rommy Diaz, Ailín Martínez, Genisley Hernández, Nestor Sepulveda, Erwin A Paz, John Quiñones","doi":"10.3390/microorganisms13092147","DOIUrl":null,"url":null,"abstract":"<p><p>The human microbiome plays a central role in modulating the immune system and maintaining immunophysiological homeostasis, contributing to the prevention of immune-mediated diseases. In particular, the gut microbiota is a key ecosystem for immune system maturation, especially in early life. This review aimed to analyze the molecular and cellular mechanisms linking the microbiome to immune and neuronal functions, as well as the impact of dysbiosis and emerging therapeutic strategies targeting the microbiome. The analysis was based on scientific databases, prioritizing studies published since 2000, with special emphasis on the past decade. The microbiome influences immune signaling through microorganism-associated molecular patterns (MAMPs) and pattern recognition receptors (PRRs), including Toll-like receptors (TLRs). Additionally, microbial metabolites-such as short-chain fatty acids (SCFAs), tryptophan derivatives, and secondary bile acids-exert significant immunomodulatory effects. The intestinal epithelial barrier is also described as an active immunological interface contributing to systemic regulation. The literature highlights innovative therapies, including fecal microbiota transplantation (FMT), probiotics, and microbiome editing with CRISPR-Cas technologies. These strategies aim to restore microbial balance and improve immune outcomes. The growing body of evidence positions the microbiome as a valuable clinical and diagnostic target, with significant potential for application in personalized medicine.</p>","PeriodicalId":18667,"journal":{"name":"Microorganisms","volume":"13 9","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472381/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microorganisms","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/microorganisms13092147","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The human microbiome plays a central role in modulating the immune system and maintaining immunophysiological homeostasis, contributing to the prevention of immune-mediated diseases. In particular, the gut microbiota is a key ecosystem for immune system maturation, especially in early life. This review aimed to analyze the molecular and cellular mechanisms linking the microbiome to immune and neuronal functions, as well as the impact of dysbiosis and emerging therapeutic strategies targeting the microbiome. The analysis was based on scientific databases, prioritizing studies published since 2000, with special emphasis on the past decade. The microbiome influences immune signaling through microorganism-associated molecular patterns (MAMPs) and pattern recognition receptors (PRRs), including Toll-like receptors (TLRs). Additionally, microbial metabolites-such as short-chain fatty acids (SCFAs), tryptophan derivatives, and secondary bile acids-exert significant immunomodulatory effects. The intestinal epithelial barrier is also described as an active immunological interface contributing to systemic regulation. The literature highlights innovative therapies, including fecal microbiota transplantation (FMT), probiotics, and microbiome editing with CRISPR-Cas technologies. These strategies aim to restore microbial balance and improve immune outcomes. The growing body of evidence positions the microbiome as a valuable clinical and diagnostic target, with significant potential for application in personalized medicine.

人类微生物组作为免疫调节轴:机制、生态失调和治疗调节。
人类微生物组在调节免疫系统和维持免疫生理稳态方面发挥着核心作用,有助于预防免疫介导的疾病。特别是,肠道微生物群是免疫系统成熟的关键生态系统,特别是在生命早期。本文旨在分析微生物组与免疫和神经元功能的分子和细胞机制,以及生态失调的影响和针对微生物组的新兴治疗策略。该分析基于科学数据库,优先考虑2000年以来发表的研究,特别强调过去十年。微生物组通过微生物相关分子模式(MAMPs)和模式识别受体(PRRs),包括toll样受体(TLRs)影响免疫信号传导。此外,微生物代谢物,如短链脂肪酸(SCFAs)、色氨酸衍生物和次级胆汁酸,具有显著的免疫调节作用。肠上皮屏障也被描述为促进系统调节的主动免疫界面。这些文献强调了创新疗法,包括粪便微生物群移植(FMT)、益生菌和利用CRISPR-Cas技术进行微生物组编辑。这些策略旨在恢复微生物平衡和改善免疫结果。越来越多的证据表明,微生物组是一个有价值的临床和诊断目标,在个性化医疗中具有巨大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microorganisms
Microorganisms Medicine-Microbiology (medical)
CiteScore
7.40
自引率
6.70%
发文量
2168
审稿时长
20.03 days
期刊介绍: Microorganisms (ISSN 2076-2607) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to prokaryotic and eukaryotic microorganisms, viruses and prions. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信