W Pfeiffer, N S Mueller, R Hillenbrand, I Niehues, P Kusch
{"title":"Correlation of near-field optical microscopy and tip-assisted photoluminescence.","authors":"W Pfeiffer, N S Mueller, R Hillenbrand, I Niehues, P Kusch","doi":"10.1111/jmi.70037","DOIUrl":null,"url":null,"abstract":"<p><p>Nanoscale optical imaging has unlocked unprecedented opportunities for exploring the structural, electronic, and optical properties of low-dimensional materials with spatial resolutions far beyond the diffraction limit. Techniques such as tip-enhanced, and tip-assisted photoluminescence (TEPL and TAPL), as well as scattering-type scanning near-field optical microscopy (s-SNOM) offer unique insights into local strain distributions, exciton dynamics, and dielectric heterogeneities that are inaccessible through conventional far-field approaches, however their combination within the same setup remains challenging. Here we present the realisation of correlative TEPL/TAPL and s-SNOM measurements within a single side-illuminated near-field optical microscope. We address the key experimental challenges inherent to the side-illumination geometry, including precise laser focus alignment, suppression of far-field background signals, and the mitigation of competing scattering pathways. Utilising monolayer WSe<sub>2</sub> as a model system, we demonstrate correlative imaging of material topography, strain-induced photoluminescence shifts, and dielectric function variations. We visualise nanoscale heterogeneities on a bubble-like structure, highlighting the complementary information from TAPL and s-SNOM. This correlative approach bridges the gap between nanoscale optical spectroscopy and near-field imaging, offering a powerful tool for probing local strain, doping, exciton behaviour, and dielectric inhomogeneities in low-dimensional materials.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microscopy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/jmi.70037","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
Nanoscale optical imaging has unlocked unprecedented opportunities for exploring the structural, electronic, and optical properties of low-dimensional materials with spatial resolutions far beyond the diffraction limit. Techniques such as tip-enhanced, and tip-assisted photoluminescence (TEPL and TAPL), as well as scattering-type scanning near-field optical microscopy (s-SNOM) offer unique insights into local strain distributions, exciton dynamics, and dielectric heterogeneities that are inaccessible through conventional far-field approaches, however their combination within the same setup remains challenging. Here we present the realisation of correlative TEPL/TAPL and s-SNOM measurements within a single side-illuminated near-field optical microscope. We address the key experimental challenges inherent to the side-illumination geometry, including precise laser focus alignment, suppression of far-field background signals, and the mitigation of competing scattering pathways. Utilising monolayer WSe2 as a model system, we demonstrate correlative imaging of material topography, strain-induced photoluminescence shifts, and dielectric function variations. We visualise nanoscale heterogeneities on a bubble-like structure, highlighting the complementary information from TAPL and s-SNOM. This correlative approach bridges the gap between nanoscale optical spectroscopy and near-field imaging, offering a powerful tool for probing local strain, doping, exciton behaviour, and dielectric inhomogeneities in low-dimensional materials.
期刊介绍:
The Journal of Microscopy is the oldest journal dedicated to the science of microscopy and the only peer-reviewed publication of the Royal Microscopical Society. It publishes papers that report on the very latest developments in microscopy such as advances in microscopy techniques or novel areas of application. The Journal does not seek to publish routine applications of microscopy or specimen preparation even though the submission may otherwise have a high scientific merit.
The scope covers research in the physical and biological sciences and covers imaging methods using light, electrons, X-rays and other radiations as well as atomic force and near field techniques. Interdisciplinary research is welcome. Papers pertaining to microscopy are also welcomed on optical theory, spectroscopy, novel specimen preparation and manipulation methods and image recording, processing and analysis including dynamic analysis of living specimens.
Publication types include full papers, hot topic fast tracked communications and review articles. Authors considering submitting a review article should contact the editorial office first.