Correlation of near-field optical microscopy and tip-assisted photoluminescence.

IF 1.9 4区 工程技术 Q3 MICROSCOPY
W Pfeiffer, N S Mueller, R Hillenbrand, I Niehues, P Kusch
{"title":"Correlation of near-field optical microscopy and tip-assisted photoluminescence.","authors":"W Pfeiffer, N S Mueller, R Hillenbrand, I Niehues, P Kusch","doi":"10.1111/jmi.70037","DOIUrl":null,"url":null,"abstract":"<p><p>Nanoscale optical imaging has unlocked unprecedented opportunities for exploring the structural, electronic, and optical properties of low-dimensional materials with spatial resolutions far beyond the diffraction limit. Techniques such as tip-enhanced, and tip-assisted photoluminescence (TEPL and TAPL), as well as scattering-type scanning near-field optical microscopy (s-SNOM) offer unique insights into local strain distributions, exciton dynamics, and dielectric heterogeneities that are inaccessible through conventional far-field approaches, however their combination within the same setup remains challenging. Here we present the realisation of correlative TEPL/TAPL and s-SNOM measurements within a single side-illuminated near-field optical microscope. We address the key experimental challenges inherent to the side-illumination geometry, including precise laser focus alignment, suppression of far-field background signals, and the mitigation of competing scattering pathways. Utilising monolayer WSe<sub>2</sub> as a model system, we demonstrate correlative imaging of material topography, strain-induced photoluminescence shifts, and dielectric function variations. We visualise nanoscale heterogeneities on a bubble-like structure, highlighting the complementary information from TAPL and s-SNOM. This correlative approach bridges the gap between nanoscale optical spectroscopy and near-field imaging, offering a powerful tool for probing local strain, doping, exciton behaviour, and dielectric inhomogeneities in low-dimensional materials.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microscopy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/jmi.70037","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0

Abstract

Nanoscale optical imaging has unlocked unprecedented opportunities for exploring the structural, electronic, and optical properties of low-dimensional materials with spatial resolutions far beyond the diffraction limit. Techniques such as tip-enhanced, and tip-assisted photoluminescence (TEPL and TAPL), as well as scattering-type scanning near-field optical microscopy (s-SNOM) offer unique insights into local strain distributions, exciton dynamics, and dielectric heterogeneities that are inaccessible through conventional far-field approaches, however their combination within the same setup remains challenging. Here we present the realisation of correlative TEPL/TAPL and s-SNOM measurements within a single side-illuminated near-field optical microscope. We address the key experimental challenges inherent to the side-illumination geometry, including precise laser focus alignment, suppression of far-field background signals, and the mitigation of competing scattering pathways. Utilising monolayer WSe2 as a model system, we demonstrate correlative imaging of material topography, strain-induced photoluminescence shifts, and dielectric function variations. We visualise nanoscale heterogeneities on a bubble-like structure, highlighting the complementary information from TAPL and s-SNOM. This correlative approach bridges the gap between nanoscale optical spectroscopy and near-field imaging, offering a powerful tool for probing local strain, doping, exciton behaviour, and dielectric inhomogeneities in low-dimensional materials.

近场光学显微镜与尖端辅助光致发光的相关性。
纳米级光学成像为探索低维材料的结构、电子和光学特性提供了前所未有的机会,其空间分辨率远远超过衍射极限。尖端增强和尖端辅助光致发光(TEPL和TAPL)以及散射型扫描近场光学显微镜(s-SNOM)等技术提供了对局部应变分布、激子动力学和介电非均质性的独特见解,这些都是传统远场方法无法实现的,但是它们在同一设置内的组合仍然具有挑战性。在这里,我们提出了在单侧照明近场光学显微镜内实现相关的TEPL/TAPL和s-SNOM测量。我们解决了侧向照明几何结构固有的关键实验挑战,包括精确的激光聚焦对准,远场背景信号的抑制,以及竞争散射路径的缓解。利用单层WSe2作为模型系统,我们展示了材料形貌、应变引起的光致发光位移和介电函数变化的相关成像。我们在气泡状结构上可视化纳米尺度的异质性,突出显示来自TAPL和s-SNOM的互补信息。这种相关的方法弥合了纳米尺度光学光谱和近场成像之间的差距,为探测低维材料中的局部应变、掺杂、激子行为和介电不均匀性提供了强大的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of microscopy
Journal of microscopy 工程技术-显微镜技术
CiteScore
4.30
自引率
5.00%
发文量
83
审稿时长
1 months
期刊介绍: The Journal of Microscopy is the oldest journal dedicated to the science of microscopy and the only peer-reviewed publication of the Royal Microscopical Society. It publishes papers that report on the very latest developments in microscopy such as advances in microscopy techniques or novel areas of application. The Journal does not seek to publish routine applications of microscopy or specimen preparation even though the submission may otherwise have a high scientific merit. The scope covers research in the physical and biological sciences and covers imaging methods using light, electrons, X-rays and other radiations as well as atomic force and near field techniques. Interdisciplinary research is welcome. Papers pertaining to microscopy are also welcomed on optical theory, spectroscopy, novel specimen preparation and manipulation methods and image recording, processing and analysis including dynamic analysis of living specimens. Publication types include full papers, hot topic fast tracked communications and review articles. Authors considering submitting a review article should contact the editorial office first.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信