The group method of data handling (GMDH) model for lead and cadmium uptake by Bromus tomentellus under the effect of biochar and urban waste compost organic amendments addition.
Esfandiar Jahantab, Salman Zare, Reza Roohi, Kailin Liu
{"title":"The group method of data handling (GMDH) model for lead and cadmium uptake by <i>Bromus tomentellus</i> under the effect of biochar and urban waste compost organic amendments addition.","authors":"Esfandiar Jahantab, Salman Zare, Reza Roohi, Kailin Liu","doi":"10.1080/15226514.2025.2562315","DOIUrl":null,"url":null,"abstract":"<p><p>Modeling and predicting heavy metal uptake by plants using organic amendments helps reduce metal concentrations in contaminated soils. This study examined the effects of 1% and 2% (W/W) biochar and urban waste compost on the growth and cadmium (Cd) and lead (Pb) uptake by <i>Bromus tomentellus</i> in contaminated soil. The highest plant height (34.0 cm) and biomass (30.0 g) occurred with 2% biochar, compared to 16.0 cm and 9.0 g in control. For Pb, the maximum bioconcentration factor (BCF) was 2.25 with 1% compost, and the highest translocation factor (TF) was 1.4 with 2% biochar. For Cd, both max BCF (3.40) and TF (1.4) were seen at 1% biochar. Metal uptake and transfer significantly correlated with biomass and soil factors such as fertility (N, P, and K), pH, sodium adsorption ratio (SAR), and organic matter (OM) (Mantel test: <i>p</i> = 0.1, <i>r</i> = 0.4). The Group Method of Data Handling (GMDH) model, with high accuracy (<i>R</i><sup>2</sup> = 0.998), showed compost caused an initial rise then decline in Cd uptake, while biochar had the opposite effect. Pb uptake increased with compost up to 1.052%, peaking at 763.7 ppm, then decreased. The GMDH model can optimize biochar or compost levels to enhance metal uptake by plants in polluted soils.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-9"},"PeriodicalIF":3.1000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Phytoremediation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15226514.2025.2562315","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Modeling and predicting heavy metal uptake by plants using organic amendments helps reduce metal concentrations in contaminated soils. This study examined the effects of 1% and 2% (W/W) biochar and urban waste compost on the growth and cadmium (Cd) and lead (Pb) uptake by Bromus tomentellus in contaminated soil. The highest plant height (34.0 cm) and biomass (30.0 g) occurred with 2% biochar, compared to 16.0 cm and 9.0 g in control. For Pb, the maximum bioconcentration factor (BCF) was 2.25 with 1% compost, and the highest translocation factor (TF) was 1.4 with 2% biochar. For Cd, both max BCF (3.40) and TF (1.4) were seen at 1% biochar. Metal uptake and transfer significantly correlated with biomass and soil factors such as fertility (N, P, and K), pH, sodium adsorption ratio (SAR), and organic matter (OM) (Mantel test: p = 0.1, r = 0.4). The Group Method of Data Handling (GMDH) model, with high accuracy (R2 = 0.998), showed compost caused an initial rise then decline in Cd uptake, while biochar had the opposite effect. Pb uptake increased with compost up to 1.052%, peaking at 763.7 ppm, then decreased. The GMDH model can optimize biochar or compost levels to enhance metal uptake by plants in polluted soils.
期刊介绍:
The International Journal of Phytoremediation (IJP) is the first journal devoted to the publication of laboratory and field research describing the use of plant systems to solve environmental problems by enabling the remediation of soil, water, and air quality and by restoring ecosystem services in managed landscapes. Traditional phytoremediation has largely focused on soil and groundwater clean-up of hazardous contaminants. Phytotechnology expands this umbrella to include many of the natural resource management challenges we face in cities, on farms, and other landscapes more integrated with daily public activities. Wetlands that treat wastewater, rain gardens that treat stormwater, poplar tree plantings that contain pollutants, urban tree canopies that treat air pollution, and specialized plants that treat decommissioned mine sites are just a few examples of phytotechnologies.