Integrating genetic and transcriptomic data to identify genes underlying obesity risk loci.

IF 3.8 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Hanfei Xu, Shreyash Gupta, Ian Dinsmore, Abbey Kollu, Anne Marie Cawley, Mohammad Y Anwar, Hung-Hsin Chen, Lauren E Petty, Sudha Seshadri, Misa Graff, Jennifer E Below, Jennifer A Brody, Geetha Chittoor, Susan P Fisher-Hoch, Nancy L Heard-Costa, Daniel Levy, Honghuang Lin, Ruth J F Loos, Joseph B Mccormick, Jerome I Rotter, Tooraj Mirshahi, Christopher D Still, Anita Destefano, L Adrienne Cupples, Karen L Mohlke, Kari E North, Anne E Justice, Ching-Ti Liu
{"title":"Integrating genetic and transcriptomic data to identify genes underlying obesity risk loci.","authors":"Hanfei Xu, Shreyash Gupta, Ian Dinsmore, Abbey Kollu, Anne Marie Cawley, Mohammad Y Anwar, Hung-Hsin Chen, Lauren E Petty, Sudha Seshadri, Misa Graff, Jennifer E Below, Jennifer A Brody, Geetha Chittoor, Susan P Fisher-Hoch, Nancy L Heard-Costa, Daniel Levy, Honghuang Lin, Ruth J F Loos, Joseph B Mccormick, Jerome I Rotter, Tooraj Mirshahi, Christopher D Still, Anita Destefano, L Adrienne Cupples, Karen L Mohlke, Kari E North, Anne E Justice, Ching-Ti Liu","doi":"10.1038/s41366-025-01898-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Genome-wide association studies (GWAS) have identified numerous body mass index (BMI) loci. However, most underlying mechanisms from risk locus to BMI remain unknown. Leveraging omics data through integrative analyses could provide more comprehensive views of biological pathways on BMI.</p><p><strong>Methods: </strong>We analyzed genotype and blood gene expression data from up to 5619 samples in the Framingham Heart Study (FHS). Using 3992 single-nucleotide polymorphisms (SNPs) at 97 BMI loci and 1408 transcripts within 1 Mb, we performed separate association analyses of transcript with BMI and SNP with transcript (P<sub>BMI</sub> and P<sub>SNP</sub>, respectively) and then a correlated meta-analysis between the full summary data sets (P<sub>META</sub>). Transcripts were prioritized if we identified transcripts that met Bonferroni-corrected significance within each omic, showed stronger associations in the correlated meta-analysis than each omic, and had corresponding SNPs in the SNP-transcript-BMI association that were at least nominally associated with BMI in FHS data. We tested for generalization of identified association in a Hispanic ancestry sample of blood gene expression data and other samples in hypothalamus, nucleus accumbens, liver, and visceral adipose tissue (VAT) with significant threshold: P<sub>META</sub> < 0.05 & P<sub>META</sub> < P<sub>SNP</sub> & P<sub>META</sub> < P<sub>BMI</sub>.</p><p><strong>Results: </strong>Among 308 significant SNP-transcript-BMI associations, we identified seven genes (NT5C2, GSTM3, SNAPC3, SPNS1, TMEM245, YPEL3, and ZNF646) in five association regions. We generalized results for SNAPC3 and YPEL3 in Hispanic ancestry sample, for YPEL3 in the nucleus accumbens, ZNF646 and GSTM3 in VAT, and NT5C2, SNAPC3, TMEM245, YPEL3, and ZNF646 in liver.</p><p><strong>Conclusion: </strong>The identified genes help link the genetic variation at obesity-risk loci to biological mechanisms and health outcomes, thus translating GWAS findings to function.</p>","PeriodicalId":14183,"journal":{"name":"International Journal of Obesity","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Obesity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41366-025-01898-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Genome-wide association studies (GWAS) have identified numerous body mass index (BMI) loci. However, most underlying mechanisms from risk locus to BMI remain unknown. Leveraging omics data through integrative analyses could provide more comprehensive views of biological pathways on BMI.

Methods: We analyzed genotype and blood gene expression data from up to 5619 samples in the Framingham Heart Study (FHS). Using 3992 single-nucleotide polymorphisms (SNPs) at 97 BMI loci and 1408 transcripts within 1 Mb, we performed separate association analyses of transcript with BMI and SNP with transcript (PBMI and PSNP, respectively) and then a correlated meta-analysis between the full summary data sets (PMETA). Transcripts were prioritized if we identified transcripts that met Bonferroni-corrected significance within each omic, showed stronger associations in the correlated meta-analysis than each omic, and had corresponding SNPs in the SNP-transcript-BMI association that were at least nominally associated with BMI in FHS data. We tested for generalization of identified association in a Hispanic ancestry sample of blood gene expression data and other samples in hypothalamus, nucleus accumbens, liver, and visceral adipose tissue (VAT) with significant threshold: PMETA < 0.05 & PMETA < PSNP & PMETA < PBMI.

Results: Among 308 significant SNP-transcript-BMI associations, we identified seven genes (NT5C2, GSTM3, SNAPC3, SPNS1, TMEM245, YPEL3, and ZNF646) in five association regions. We generalized results for SNAPC3 and YPEL3 in Hispanic ancestry sample, for YPEL3 in the nucleus accumbens, ZNF646 and GSTM3 in VAT, and NT5C2, SNAPC3, TMEM245, YPEL3, and ZNF646 in liver.

Conclusion: The identified genes help link the genetic variation at obesity-risk loci to biological mechanisms and health outcomes, thus translating GWAS findings to function.

整合遗传和转录组学数据以确定肥胖风险位点的基因。
背景:全基因组关联研究(GWAS)已经确定了许多体重指数(BMI)位点。然而,从风险位点到BMI的大多数潜在机制仍不清楚。通过综合分析利用组学数据可以为BMI的生物学途径提供更全面的观点。方法:我们分析了弗雷明汉心脏研究(FHS)中多达5619个样本的基因型和血液基因表达数据。利用97个BMI位点的3992个单核苷酸多态性(SNP)和1mb内的1408个转录本,我们分别对转录本与BMI和转录本的SNP(分别为PBMI和PSNP)进行了关联分析,然后在完整的汇总数据集(PMETA)之间进行了相关meta分析。如果我们在每个基因组中识别出符合bonferroni校正显著性的转录本,在相关荟萃分析中显示出比每个基因组更强的相关性,并且在snp -转录-BMI关联中具有相应的snp,则转录本被优先考虑,至少在名义上与FHS数据中的BMI相关。我们测试了西班牙血统血液基因表达数据样本和下丘脑、伏隔核、肝脏和内脏脂肪组织(VAT)的其他样本中已确定的关联的普遍性,具有显著阈值:PMETA META SNP和PMETA BMI。结果:在308个snp -转录- bmi显著关联中,我们在5个关联区域鉴定出7个基因(NT5C2、GSTM3、SNAPC3、SPNS1、TMEM245、YPEL3和ZNF646)。我们将西班牙血统样本中的SNAPC3和YPEL3,伏隔核中的YPEL3, VAT中的ZNF646和GSTM3,以及肝脏中的NT5C2, SNAPC3, TMEM245, YPEL3和ZNF646的结果进行了推广。结论:所鉴定的基因有助于将肥胖风险位点的遗传变异与生物学机制和健康结果联系起来,从而将GWAS的发现转化为功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Obesity
International Journal of Obesity 医学-内分泌学与代谢
CiteScore
10.00
自引率
2.00%
发文量
221
审稿时长
3 months
期刊介绍: The International Journal of Obesity is a multi-disciplinary forum for research describing basic, clinical and applied studies in biochemistry, physiology, genetics and nutrition, molecular, metabolic, psychological and epidemiological aspects of obesity and related disorders. We publish a range of content types including original research articles, technical reports, reviews, correspondence and brief communications that elaborate on significant advances in the field and cover topical issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信