{"title":"The Effects of Cold Acclimation on Cold Tolerance and Growth and Reproduction of <i>Plodia interpunctella</i>.","authors":"Zhuoke Shi, Huiyuan Zhang, Shaohua Lu, Mingshun Chen","doi":"10.3390/insects16090927","DOIUrl":null,"url":null,"abstract":"<p><p><i>Plodia interpunctella</i> is a globally significant pest of stored grains, posing a major threat to food safety. To explore its cold-adaptation mechanisms, this study evaluated the physiological and developmental responses of different life stages following short-term cold acclimation at 4 °C. Results showed that cold acclimation significantly reduced the supercooling points (SCPs) of larvae and pupae, with the greatest reduction observed in the second instar larvae. Antioxidant enzyme assays revealed marked increases in the activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), indicating enhanced oxidative stress resistance. Developmental durations were significantly shortened at lower temperatures in acclimated individuals, and fecundity was notably increased at 24 °C, although no significant changes were observed at higher temperatures. These findings suggest that cold acclimation improves the cold tolerance and reproductive performance of <i>P. interpunctella</i> under low-temperature conditions, offering insights into insect adaptability and providing theoretical support for the development of low-temperature-based pest management strategies in stored grain systems.</p>","PeriodicalId":13642,"journal":{"name":"Insects","volume":"16 9","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12470736/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insects","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/insects16090927","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Plodia interpunctella is a globally significant pest of stored grains, posing a major threat to food safety. To explore its cold-adaptation mechanisms, this study evaluated the physiological and developmental responses of different life stages following short-term cold acclimation at 4 °C. Results showed that cold acclimation significantly reduced the supercooling points (SCPs) of larvae and pupae, with the greatest reduction observed in the second instar larvae. Antioxidant enzyme assays revealed marked increases in the activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), indicating enhanced oxidative stress resistance. Developmental durations were significantly shortened at lower temperatures in acclimated individuals, and fecundity was notably increased at 24 °C, although no significant changes were observed at higher temperatures. These findings suggest that cold acclimation improves the cold tolerance and reproductive performance of P. interpunctella under low-temperature conditions, offering insights into insect adaptability and providing theoretical support for the development of low-temperature-based pest management strategies in stored grain systems.
InsectsAgricultural and Biological Sciences-Insect Science
CiteScore
5.10
自引率
10.00%
发文量
1013
审稿时长
21.77 days
期刊介绍:
Insects (ISSN 2075-4450) is an international, peer-reviewed open access journal of entomology published by MDPI online quarterly. It publishes reviews, research papers and communications related to the biology, physiology and the behavior of insects and arthropods. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.