Relative Effectiveness of Amorphous Silica, Malathion, and Pirimiphos Methyl in Controlling Sitophilus oryzae and Tribolium castaneum and Their Long-Term Effects on Stored Wheat Under Laboratory Conditions.
{"title":"Relative Effectiveness of Amorphous Silica, Malathion, and Pirimiphos Methyl in Controlling <i>Sitophilus oryzae</i> and <i>Tribolium castaneum</i> and Their Long-Term Effects on Stored Wheat Under Laboratory Conditions.","authors":"Nawal Abdulaziz Alfuhaid, Mohamed S Shawir","doi":"10.3390/insects16090981","DOIUrl":null,"url":null,"abstract":"<p><p>The relative efficacy of amorphous silica dusts, malathion, and pirimiphos methyl was assessed against <i>S. oryzae</i> and <i>T. castaneum</i> in stored wheat under laboratory conditions. Insecticidal performance was influenced by physical properties such as particle size, surface area, bulk density, and oil/water adsorption capacity. Fumed silicas showed the highest toxicity, particularly Wacker HDK H20 (LC<sub>50</sub> = 19.4 mg/100 g at 12% moisture). Precipitated silica, Sipernat 22, though less potent (LC<sub>50</sub> = 46.6 mg/100 g), displayed consistent efficacy across different moisture levels, making it a suitable inert carrier. Increasing grain moisture to 15% significantly reduced the effectiveness of all dusts. When insecticides were combined with silica, their toxicity increased markedly. Malathion on silica (0.2%) reduced LC<sub>50</sub> values to 21.5 and 23.3 µg a.i./100 g for <i>T. castaneum</i> and <i>S. oryzae</i>, respectively, compared to 52.3 and 84.7 µg a.i./100 g on talc. Pirimiphos methyl on silica (0.1%) was the most effective, achieving LC<sub>50</sub> values of 13.4 and 15.5 µg a.i./100 g. Long-term bioassays over 25 weeks showed declining mortality rates, particularly at 15% moisture. However, pirimiphos methyl on silica maintained over 90% mortality at 12% moisture throughout the period, indicating strong residual efficacy. The results highlight the synergistic potential of combining silica with chemical insecticides and the crucial role of environmental humidity in stored grain pest management.</p>","PeriodicalId":13642,"journal":{"name":"Insects","volume":"16 9","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12470828/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insects","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/insects16090981","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The relative efficacy of amorphous silica dusts, malathion, and pirimiphos methyl was assessed against S. oryzae and T. castaneum in stored wheat under laboratory conditions. Insecticidal performance was influenced by physical properties such as particle size, surface area, bulk density, and oil/water adsorption capacity. Fumed silicas showed the highest toxicity, particularly Wacker HDK H20 (LC50 = 19.4 mg/100 g at 12% moisture). Precipitated silica, Sipernat 22, though less potent (LC50 = 46.6 mg/100 g), displayed consistent efficacy across different moisture levels, making it a suitable inert carrier. Increasing grain moisture to 15% significantly reduced the effectiveness of all dusts. When insecticides were combined with silica, their toxicity increased markedly. Malathion on silica (0.2%) reduced LC50 values to 21.5 and 23.3 µg a.i./100 g for T. castaneum and S. oryzae, respectively, compared to 52.3 and 84.7 µg a.i./100 g on talc. Pirimiphos methyl on silica (0.1%) was the most effective, achieving LC50 values of 13.4 and 15.5 µg a.i./100 g. Long-term bioassays over 25 weeks showed declining mortality rates, particularly at 15% moisture. However, pirimiphos methyl on silica maintained over 90% mortality at 12% moisture throughout the period, indicating strong residual efficacy. The results highlight the synergistic potential of combining silica with chemical insecticides and the crucial role of environmental humidity in stored grain pest management.
InsectsAgricultural and Biological Sciences-Insect Science
CiteScore
5.10
自引率
10.00%
发文量
1013
审稿时长
21.77 days
期刊介绍:
Insects (ISSN 2075-4450) is an international, peer-reviewed open access journal of entomology published by MDPI online quarterly. It publishes reviews, research papers and communications related to the biology, physiology and the behavior of insects and arthropods. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.