Stephania Herodotou, Natalie Lissenden, Kevin Skinley, Derric Nimmo, Janneke Snetselaar, Amy Guy, Peter Myers, Svetlana Ryazanskaya
{"title":"Preliminary Assessment of Bespoke ('X-tec') Silica Particles for IRS Applications.","authors":"Stephania Herodotou, Natalie Lissenden, Kevin Skinley, Derric Nimmo, Janneke Snetselaar, Amy Guy, Peter Myers, Svetlana Ryazanskaya","doi":"10.3390/insects16090937","DOIUrl":null,"url":null,"abstract":"<p><p>The efficacy of indoor residual spray (IRS) products is affected by various factors, such as the substrate on which they are sprayed and the surface concentration and bioavailability of the insecticide. This study investigated the potential of bespoke silica particles (hereafter referred to as 'X-tec silica') as a unique carrier for insecticides to reduce the insecticide content in an IRS formulation by improving pickup by mosquitoes and optimising the physical state of the insecticide while maintaining its residual biological activity on a surface. Molecular computer modelling was used to define the critical crystallisation size of clothianidin, and silica particles were manufactured with pore diameters smaller than this length to maintain the insecticide in an amorphous state. Silica carriers were then formulated to incorporate clothianidin inside their pores, and a full material characterisation was conducted to assess the clothianidin coating position on/in the silica particles, their concentration, and their physical form. The clothianidin-formulated silica (10%) was sprayed at three different application rates (30, 60, and 90 mg active ingredient (a.i.)/m<sup>2</sup>) onto two surfaces: glazed and unglazed tiles. The tiles were tested for bioefficacy against the insecticide-susceptible <i>Anopheles gambiae</i> s.s. Kisumu mosquito strain at 1 week and 8 months post-spray application. At 1 week post-spray application, at 60 and 90 mg a.i./m<sup>2</sup> application rates, 100% mortality was observed on both surfaces within 48 h. For the lowest concentration (30 mg a.i./m<sup>2</sup>), 100% mortality was reached within 72 h on glazed tiles; however, for unglazed tiles, due to the surface irregularity and porosity, it remained below 60%. At 8 months post-spray application, on glazed tiles, 100% mortality was reached within 24 h at 60 and 90 mg a.i./m<sup>2</sup> application rates and within 48 h at 30 mg a.i./m<sup>2</sup>. On unglazed tiles, 96 h mortality was not measured; however, 100% mortality was reached within 72 h (90 mg a.i./m<sup>2</sup>) and 120 h (60 mg a.i./m<sup>2</sup>) at higher concentrations. At the lowest concentration (30 mg a.i./m<sup>2</sup>) at 120 h, mortality only reached 25%. The lowest application rate tested (30 mg a.i./m<sup>2</sup>) is ten times lower than that of current products on the market and demonstrates the potential of this approach. Preliminary findings from this study suggest that X-tec silica particles may enhance the effectiveness of IRS using clothianidin. However, further extensive research is needed to confirm this.</p>","PeriodicalId":13642,"journal":{"name":"Insects","volume":"16 9","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12470417/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insects","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/insects16090937","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The efficacy of indoor residual spray (IRS) products is affected by various factors, such as the substrate on which they are sprayed and the surface concentration and bioavailability of the insecticide. This study investigated the potential of bespoke silica particles (hereafter referred to as 'X-tec silica') as a unique carrier for insecticides to reduce the insecticide content in an IRS formulation by improving pickup by mosquitoes and optimising the physical state of the insecticide while maintaining its residual biological activity on a surface. Molecular computer modelling was used to define the critical crystallisation size of clothianidin, and silica particles were manufactured with pore diameters smaller than this length to maintain the insecticide in an amorphous state. Silica carriers were then formulated to incorporate clothianidin inside their pores, and a full material characterisation was conducted to assess the clothianidin coating position on/in the silica particles, their concentration, and their physical form. The clothianidin-formulated silica (10%) was sprayed at three different application rates (30, 60, and 90 mg active ingredient (a.i.)/m2) onto two surfaces: glazed and unglazed tiles. The tiles were tested for bioefficacy against the insecticide-susceptible Anopheles gambiae s.s. Kisumu mosquito strain at 1 week and 8 months post-spray application. At 1 week post-spray application, at 60 and 90 mg a.i./m2 application rates, 100% mortality was observed on both surfaces within 48 h. For the lowest concentration (30 mg a.i./m2), 100% mortality was reached within 72 h on glazed tiles; however, for unglazed tiles, due to the surface irregularity and porosity, it remained below 60%. At 8 months post-spray application, on glazed tiles, 100% mortality was reached within 24 h at 60 and 90 mg a.i./m2 application rates and within 48 h at 30 mg a.i./m2. On unglazed tiles, 96 h mortality was not measured; however, 100% mortality was reached within 72 h (90 mg a.i./m2) and 120 h (60 mg a.i./m2) at higher concentrations. At the lowest concentration (30 mg a.i./m2) at 120 h, mortality only reached 25%. The lowest application rate tested (30 mg a.i./m2) is ten times lower than that of current products on the market and demonstrates the potential of this approach. Preliminary findings from this study suggest that X-tec silica particles may enhance the effectiveness of IRS using clothianidin. However, further extensive research is needed to confirm this.
InsectsAgricultural and Biological Sciences-Insect Science
CiteScore
5.10
自引率
10.00%
发文量
1013
审稿时长
21.77 days
期刊介绍:
Insects (ISSN 2075-4450) is an international, peer-reviewed open access journal of entomology published by MDPI online quarterly. It publishes reviews, research papers and communications related to the biology, physiology and the behavior of insects and arthropods. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.