Chun Shi, Changyu Xiong, Ziyu Cao, Haixiang Zhang, Ying Wang, Wei Sun, Yifan Cui, Rong Zhang, Shuhua Wei
{"title":"Effect of Seasonal Grazing on Ground-Dwelling Insect Communities in the Desert Steppe of Ningxia.","authors":"Chun Shi, Changyu Xiong, Ziyu Cao, Haixiang Zhang, Ying Wang, Wei Sun, Yifan Cui, Rong Zhang, Shuhua Wei","doi":"10.3390/insects16090939","DOIUrl":null,"url":null,"abstract":"<p><p>To investigate the effects of seasonal grazing on ground-dwelling insect communities in desert steppe, this study conducted a controlled experiment in the desert steppe of Yanchi County, Ningxia, during 2022-2023. Five grazing regimes were established: spring-summer grazing (Sp+Su), spring-autumn grazing (Sp+Au), summer-autumn grazing (Su+Au), year-round continuous grazing (Annual), and no grazing (Control, CK). Insects were collected using pitfall traps and categorized into herbivorous and predatory functional groups. Combined with monitoring of vegetation community structure, we analyzed the regulatory mechanisms of grazing on insect diversity. The results showed that different grazing regimes had significantly divergent effects on herbivorous and predatory insects. Herbivorous insect diversity was significantly highest under the Annual grazing regime, while Sp+Au grazing effectively controlled herbivorous insect occurrence, resulting in the lowest abundance. Predatory insects exhibited the highest abundance but the lowest diversity under Su+Au grazing, whereas the CK regime increased their species richness. Beta diversity analysis indicated that total replacement diversity (Repl) was dominant, suggesting that grazing primarily influenced community structure by altering species composition rather than changing species number. Non-metric multidimensional scaling (NMDS) results revealed clustering characteristics of insect community structures under different grazing regimes. Redundancy analysis (RDA) and generalized additive models (GAMs) identified vegetation height and predatory insect abundance as key factors driving changes in herbivorous insects. Vegetation density and biomass exhibited nonlinear regulatory effects on herbivorous insects. Based on these findings, we recommend adopting either a hybrid strategy of \"year-round continuous grazing combined with seasonal rest\" or specifically the \"spring + autumn\" (Sp+Au) grazing regime. These approaches aim to synergistically achieve the goals of pest control and biodiversity conservation in desert steppe ecosystems.</p>","PeriodicalId":13642,"journal":{"name":"Insects","volume":"16 9","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471267/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insects","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/insects16090939","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
To investigate the effects of seasonal grazing on ground-dwelling insect communities in desert steppe, this study conducted a controlled experiment in the desert steppe of Yanchi County, Ningxia, during 2022-2023. Five grazing regimes were established: spring-summer grazing (Sp+Su), spring-autumn grazing (Sp+Au), summer-autumn grazing (Su+Au), year-round continuous grazing (Annual), and no grazing (Control, CK). Insects were collected using pitfall traps and categorized into herbivorous and predatory functional groups. Combined with monitoring of vegetation community structure, we analyzed the regulatory mechanisms of grazing on insect diversity. The results showed that different grazing regimes had significantly divergent effects on herbivorous and predatory insects. Herbivorous insect diversity was significantly highest under the Annual grazing regime, while Sp+Au grazing effectively controlled herbivorous insect occurrence, resulting in the lowest abundance. Predatory insects exhibited the highest abundance but the lowest diversity under Su+Au grazing, whereas the CK regime increased their species richness. Beta diversity analysis indicated that total replacement diversity (Repl) was dominant, suggesting that grazing primarily influenced community structure by altering species composition rather than changing species number. Non-metric multidimensional scaling (NMDS) results revealed clustering characteristics of insect community structures under different grazing regimes. Redundancy analysis (RDA) and generalized additive models (GAMs) identified vegetation height and predatory insect abundance as key factors driving changes in herbivorous insects. Vegetation density and biomass exhibited nonlinear regulatory effects on herbivorous insects. Based on these findings, we recommend adopting either a hybrid strategy of "year-round continuous grazing combined with seasonal rest" or specifically the "spring + autumn" (Sp+Au) grazing regime. These approaches aim to synergistically achieve the goals of pest control and biodiversity conservation in desert steppe ecosystems.
InsectsAgricultural and Biological Sciences-Insect Science
CiteScore
5.10
自引率
10.00%
发文量
1013
审稿时长
21.77 days
期刊介绍:
Insects (ISSN 2075-4450) is an international, peer-reviewed open access journal of entomology published by MDPI online quarterly. It publishes reviews, research papers and communications related to the biology, physiology and the behavior of insects and arthropods. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.