Zhenyu Yang, Kai Luo, Dan Chen, Lei Dou, Xiufang Huang, Jianquan Kan
{"title":"Dual Blockade of PI3K and EGFR Pathways by Flavonoids from <i>Idesia polycarpa</i> Maxim Cake Meal: Valorization of Agro-Industrial Waste for NSCLC Therapy.","authors":"Zhenyu Yang, Kai Luo, Dan Chen, Lei Dou, Xiufang Huang, Jianquan Kan","doi":"10.3390/foods14183278","DOIUrl":null,"url":null,"abstract":"<p><p>Efficient utilization of food industry waste supports sustainable development. <i>Idesia polycarpa</i> Maxim cake meal (an oil-processing by-product) is rich in bioactive flavonoids, but the refined purification, anti-non-small cell lung cancer (NSCLC) activity, and mechanism of its total flavonoids (IPTF) remain unclear-restricting high-value use. This study optimized IPTF purification via polyamide resin gradient elution and characterized its chemical composition by HPLC/LC-MS. In vitro assays assessed IPTF's effects on A549 cell proliferation, migration, invasion, colony formation, and apoptosis; network pharmacology and molecular docking predicted mechanisms, validated via Western blotting for key signaling pathways. Results showed IPTF purity was significantly improved after purification; HPLC/LC-MS identified rutin, quercetin, and six minor components as key constituents. IPTF inhibited A549 proliferation, and network pharmacology indicated it synergistically targets the PI3K/AKT and EGFR-MAPK pathways-validated by reduced phosphorylation of p-AKT, p-EGFR, and p-ERK. This work offers a novel strategy for <i>I. polycarpa</i> cake meal valorization and highlights IPTF's potential as a multi-target natural candidate for NSCLC therapy.</p>","PeriodicalId":12386,"journal":{"name":"Foods","volume":"14 18","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12469679/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/foods14183278","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Efficient utilization of food industry waste supports sustainable development. Idesia polycarpa Maxim cake meal (an oil-processing by-product) is rich in bioactive flavonoids, but the refined purification, anti-non-small cell lung cancer (NSCLC) activity, and mechanism of its total flavonoids (IPTF) remain unclear-restricting high-value use. This study optimized IPTF purification via polyamide resin gradient elution and characterized its chemical composition by HPLC/LC-MS. In vitro assays assessed IPTF's effects on A549 cell proliferation, migration, invasion, colony formation, and apoptosis; network pharmacology and molecular docking predicted mechanisms, validated via Western blotting for key signaling pathways. Results showed IPTF purity was significantly improved after purification; HPLC/LC-MS identified rutin, quercetin, and six minor components as key constituents. IPTF inhibited A549 proliferation, and network pharmacology indicated it synergistically targets the PI3K/AKT and EGFR-MAPK pathways-validated by reduced phosphorylation of p-AKT, p-EGFR, and p-ERK. This work offers a novel strategy for I. polycarpa cake meal valorization and highlights IPTF's potential as a multi-target natural candidate for NSCLC therapy.
期刊介绍:
Foods (ISSN 2304-8158) is an international, peer-reviewed scientific open access journal which provides an advanced forum for studies related to all aspects of food research. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists, researchers, and other food professionals to publish their experimental and theoretical results in as much detail as possible or share their knowledge with as much readers unlimitedly as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
manuscripts regarding research proposals and research ideas will be particularly welcomed
electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material
we also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds