Lightweight Quantum Authentication and Key Agreement Scheme in the Smart Grid Environment.

IF 2 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-09-14 DOI:10.3390/e27090957
Zehui Jiang, Run-Hua Shi
{"title":"Lightweight Quantum Authentication and Key Agreement Scheme in the Smart Grid Environment.","authors":"Zehui Jiang, Run-Hua Shi","doi":"10.3390/e27090957","DOIUrl":null,"url":null,"abstract":"<p><p>Smart grids leverage smart terminal devices to collect information from the user side, achieving accurate load forecasting and optimized dispatching of power systems, effectively improving power supply efficiency and reliability while reducing energy consumption. However, the development of quantum technology poses severe challenges to the communication security of smart grids that rely on traditional cryptography. To address this security risk in the quantum era, this paper draws on the core idea of quantum private comparison and proposes a quantum-secure identity authentication and key agreement scheme suitable for smart grids. This scheme uses Bell states as quantum resources, combines hash functions and XOR operations, and can adapt to resource-constrained terminal devices. Through a security proof, it verifies the scheme's ability to resist various attacks; the experimental results further show that the scheme still has good robustness in different noise environments, providing a feasible technical path for the secure communication of smart grids in the quantum environment and having clear practical engineering value.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 9","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12469892/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27090957","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Smart grids leverage smart terminal devices to collect information from the user side, achieving accurate load forecasting and optimized dispatching of power systems, effectively improving power supply efficiency and reliability while reducing energy consumption. However, the development of quantum technology poses severe challenges to the communication security of smart grids that rely on traditional cryptography. To address this security risk in the quantum era, this paper draws on the core idea of quantum private comparison and proposes a quantum-secure identity authentication and key agreement scheme suitable for smart grids. This scheme uses Bell states as quantum resources, combines hash functions and XOR operations, and can adapt to resource-constrained terminal devices. Through a security proof, it verifies the scheme's ability to resist various attacks; the experimental results further show that the scheme still has good robustness in different noise environments, providing a feasible technical path for the secure communication of smart grids in the quantum environment and having clear practical engineering value.

智能电网环境下轻量级量子认证与密钥协议方案。
智能电网利用智能终端设备从用户端收集信息,实现电力系统的准确负荷预测和优化调度,在降低能耗的同时有效提高供电效率和可靠性。然而,量子技术的发展对依赖传统密码技术的智能电网的通信安全提出了严峻的挑战。为了解决量子时代的这一安全风险,本文借鉴量子私有比较的核心思想,提出了一种适用于智能电网的量子安全身份认证与密钥协议方案。该方案采用贝尔态作为量子资源,结合哈希函数和异或运算,能够适应资源受限的终端设备。通过安全证明,验证了方案抵抗各种攻击的能力;实验结果进一步表明,该方案在不同噪声环境下仍具有良好的鲁棒性,为量子环境下智能电网的安全通信提供了可行的技术路径,具有明显的工程实用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信