{"title":"GNSS Interference Identification Driven by Eye Pattern Features: ICOA-CNN-ResNet-BiLSTM Optimized Deep Learning Architecture.","authors":"Chuanyu Wu, Yuanfa Ji, Xiyan Sun","doi":"10.3390/e27090938","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, the key challenges faced by global navigation satellite systems (GNSSs) in the field of security are addressed, and an eye diagram-based deep learning framework for intelligent classification of interference types is proposed. GNSS signals are first transformed into two-dimensional eye diagrams, enabling a novel visual representation wherein interference types are distinguished through entropy-centric feature analysis. Specifically, the quantification of information entropy within these diagrams serves as a theoretical foundation for extracting salient discriminative features, reflecting the structural complexity and uncertainty of the underlying signal distortions. We designed a hybrid architecture that integrates spatial feature extraction, gradient stability enhancement, and time dynamics modeling capabilities and combines the advantages of a convolutional neural network, residual network, and bidirectional long short-term memory network. To further improve model performance, we propose an improved coati optimization algorithm (ICOA), which combines chaotic mapping, an elite perturbation mechanism, and an adaptive weighting strategy for hyperparameter optimization. Compared with mainstream optimization methods, this algorithm improves the convergence accuracy by more than 30%. Experimental results on jamming datasets (continuous wave interference, chirp interference, pulse interference, frequency-modulated interference, amplitude-modulated interference, and spoofing interference) demonstrate that our method achieved performance in terms of accuracy, precision, recall, F1 score, and specificity, with values of 98.02%, 97.09%, 97.24%, 97.14%, and 99.65%, respectively, which represent improvements of 1.98%, 2.80%, 6.10%, 4.59%, and 0.33% over the next-best model. This study provides an efficient, entropy-aware, intelligent, and practically feasible solution for GNSS interference identification.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 9","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468706/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27090938","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the key challenges faced by global navigation satellite systems (GNSSs) in the field of security are addressed, and an eye diagram-based deep learning framework for intelligent classification of interference types is proposed. GNSS signals are first transformed into two-dimensional eye diagrams, enabling a novel visual representation wherein interference types are distinguished through entropy-centric feature analysis. Specifically, the quantification of information entropy within these diagrams serves as a theoretical foundation for extracting salient discriminative features, reflecting the structural complexity and uncertainty of the underlying signal distortions. We designed a hybrid architecture that integrates spatial feature extraction, gradient stability enhancement, and time dynamics modeling capabilities and combines the advantages of a convolutional neural network, residual network, and bidirectional long short-term memory network. To further improve model performance, we propose an improved coati optimization algorithm (ICOA), which combines chaotic mapping, an elite perturbation mechanism, and an adaptive weighting strategy for hyperparameter optimization. Compared with mainstream optimization methods, this algorithm improves the convergence accuracy by more than 30%. Experimental results on jamming datasets (continuous wave interference, chirp interference, pulse interference, frequency-modulated interference, amplitude-modulated interference, and spoofing interference) demonstrate that our method achieved performance in terms of accuracy, precision, recall, F1 score, and specificity, with values of 98.02%, 97.09%, 97.24%, 97.14%, and 99.65%, respectively, which represent improvements of 1.98%, 2.80%, 6.10%, 4.59%, and 0.33% over the next-best model. This study provides an efficient, entropy-aware, intelligent, and practically feasible solution for GNSS interference identification.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.