Bimodal ex vivo biomechanical characterization of corneal UVA-crosslinking via optical coherence elastography and nanoindentation under physiological conditions

IF 2.7 2区 医学 Q1 OPHTHALMOLOGY
Robert Lohmüller , Matteo Frigelli , Günther Schlunck , Sabine Kling , Phillipe Büchler , Thomas Reinhard , Stefan J. Lang
{"title":"Bimodal ex vivo biomechanical characterization of corneal UVA-crosslinking via optical coherence elastography and nanoindentation under physiological conditions","authors":"Robert Lohmüller ,&nbsp;Matteo Frigelli ,&nbsp;Günther Schlunck ,&nbsp;Sabine Kling ,&nbsp;Phillipe Büchler ,&nbsp;Thomas Reinhard ,&nbsp;Stefan J. Lang","doi":"10.1016/j.exer.2025.110664","DOIUrl":null,"url":null,"abstract":"<div><div>Riboflavin-mediated UVA corneal crosslinking (CXL) stabilizes corneal ectasia, but its biomechanical effects remain difficult to quantify. This study combines Optical Coherence Elastography (OCE), an imaging technique which provides spatially resolved deformation maps across the corneal volume, with Nanoindentation (NI), a technique that relies on direct force measurements at predefined locations on the cornea, to assess corneal biomechanics before and after CXL. Ten human donor corneas were incubated for 24 h in a medium containing 15 % dextran to control hydration and thickness. A custom-made sample mount exerting adjustable retrocorneal fluid pressure enabled <em>ex vivo</em> characterization of the entire cornea while maintaining its natural shape and physiological tension. Each cornea was analyzed with both OCE and NI before and after standard Dresden protocol CXL. Linear mixed-effects models revealed significant CXL-induced stiffening across both methods, most pronounced in the central cornea and a decreasing peripherally. OCE showed a central reduction in axial strain (<span><math><mrow><msub><mi>ε</mi><mrow><mi>z</mi><mi>z</mi></mrow></msub></mrow></math></span>) of 2.6 ‰ (p &lt; 0.01), while NI revealed a consistent central increase in Hertz elastic modulus (<span><math><mrow><msub><mi>E</mi><mi>n</mi></msub></mrow></math></span>) of ∼14 kPa (p &lt; 0.01) across both loading rates (300 and 600 μN/min). Although baseline stiffness increased with loading rate (128 kPa vs. 147 kPa), the CXL stiffening effect remained constant. Both techniques confirmed significant regional differences in the CXL response from central to peripheral (p &lt; 0.05). This study provides spatially resolved, quantitative insight into corneal biomechanics using two fundamentally different mechanical testing modalities. The integration of imaging-based OCE with force-based NI establishes a robust experimental foundation for <em>in silico</em> numerical modeling, enabling CXL treatment optimization and predictive simulations.</div></div>","PeriodicalId":12177,"journal":{"name":"Experimental eye research","volume":"261 ","pages":"Article 110664"},"PeriodicalIF":2.7000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental eye research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014483525004361","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Riboflavin-mediated UVA corneal crosslinking (CXL) stabilizes corneal ectasia, but its biomechanical effects remain difficult to quantify. This study combines Optical Coherence Elastography (OCE), an imaging technique which provides spatially resolved deformation maps across the corneal volume, with Nanoindentation (NI), a technique that relies on direct force measurements at predefined locations on the cornea, to assess corneal biomechanics before and after CXL. Ten human donor corneas were incubated for 24 h in a medium containing 15 % dextran to control hydration and thickness. A custom-made sample mount exerting adjustable retrocorneal fluid pressure enabled ex vivo characterization of the entire cornea while maintaining its natural shape and physiological tension. Each cornea was analyzed with both OCE and NI before and after standard Dresden protocol CXL. Linear mixed-effects models revealed significant CXL-induced stiffening across both methods, most pronounced in the central cornea and a decreasing peripherally. OCE showed a central reduction in axial strain (εzz) of 2.6 ‰ (p < 0.01), while NI revealed a consistent central increase in Hertz elastic modulus (En) of ∼14 kPa (p < 0.01) across both loading rates (300 and 600 μN/min). Although baseline stiffness increased with loading rate (128 kPa vs. 147 kPa), the CXL stiffening effect remained constant. Both techniques confirmed significant regional differences in the CXL response from central to peripheral (p < 0.05). This study provides spatially resolved, quantitative insight into corneal biomechanics using two fundamentally different mechanical testing modalities. The integration of imaging-based OCE with force-based NI establishes a robust experimental foundation for in silico numerical modeling, enabling CXL treatment optimization and predictive simulations.
生理条件下角膜uva交联的光学相干弹性成像和纳米压痕双峰离体生物力学表征。
核黄素介导的UVA角膜交联(CXL)稳定了角膜扩张,但其生物力学效应仍然难以量化。本研究将光学相干弹性成像(OCE)和纳米压痕(NI)相结合,前者是一种成像技术,可提供整个角膜体积的空间分辨变形图,后者是一种依赖于角膜上预定义位置的直接力测量的技术,用于评估角膜CXL前后的生物力学。10个人供体角膜在含有15%葡聚糖的培养基中培养24小时,以控制水合作用和厚度。一个定制的样品支架施加可调节的角膜后液体压力,使整个角膜的离体表征,同时保持其自然形状和生理张力。在标准德累斯顿协议CXL前后,对每个角膜进行OCE和NI分析。线性混合效应模型显示,在两种方法中,cxl诱导的硬化都是显著的,最明显的是在角膜中央和周围减少。在300和600 μN / min的加载速率下,OCE的轴向应变中心降低了2.6‰(p < 0.01),而NI的赫兹弹性模量中心增加了~ 14 kPa (p < 0.01)。虽然基线刚度随着加载速率的增加而增加(128 kPa vs 147 kPa),但CXL的加筋效果保持不变。两种技术都证实了CXL反应从中央到外周的显著区域差异(p < 0.05)。这项研究提供了空间分辨,定量洞察角膜生物力学使用两种根本不同的力学测试模式。基于成像的OCE与基于力的NI的集成为计算机数值建模奠定了坚实的实验基础,使CXL治疗优化和预测模拟成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Experimental eye research
Experimental eye research 医学-眼科学
CiteScore
6.80
自引率
5.90%
发文量
323
审稿时长
66 days
期刊介绍: The primary goal of Experimental Eye Research is to publish original research papers on all aspects of experimental biology of the eye and ocular tissues that seek to define the mechanisms of normal function and/or disease. Studies of ocular tissues that encompass the disciplines of cell biology, developmental biology, genetics, molecular biology, physiology, biochemistry, biophysics, immunology or microbiology are most welcomed. Manuscripts that are purely clinical or in a surgical area of ophthalmology are not appropriate for submission to Experimental Eye Research and if received will be returned without review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信