Gradient-Free De Novo Learning.

IF 2 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-09-22 DOI:10.3390/e27090992
Karl Friston, Thomas Parr, Conor Heins, Lancelot Da Costa, Tommaso Salvatori, Alexander Tschantz, Magnus Koudahl, Toon Van de Maele, Christopher Buckley, Tim Verbelen
{"title":"Gradient-Free De Novo Learning.","authors":"Karl Friston, Thomas Parr, Conor Heins, Lancelot Da Costa, Tommaso Salvatori, Alexander Tschantz, Magnus Koudahl, Toon Van de Maele, Christopher Buckley, Tim Verbelen","doi":"10.3390/e27090992","DOIUrl":null,"url":null,"abstract":"<p><p>This technical note applies active inference to the problem of learning goal-directed behaviour from scratch, namely, de novo learning. By de novo learning, we mean discovering, directly from observations, the structure and parameters of a discrete generative model for sequential policy optimisation. Concretely, our procedure grows and then reduces a model until it discovers a pullback attractor over (generalised) states; this attracting set supplies paths of least action among goal states while avoiding costly states. The implicit efficiency rests upon reframing the learning problem through the lens of the free energy principle, under which it is sufficient to learn a generative model whose dynamics feature such an attracting set. For context, we briefly relate this perspective to value-based formulations (e.g., Bellman optimality) and then apply the active inference formulation to a small arcade game to illustrate de novo structure learning and ensuing agency.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 9","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468873/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27090992","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This technical note applies active inference to the problem of learning goal-directed behaviour from scratch, namely, de novo learning. By de novo learning, we mean discovering, directly from observations, the structure and parameters of a discrete generative model for sequential policy optimisation. Concretely, our procedure grows and then reduces a model until it discovers a pullback attractor over (generalised) states; this attracting set supplies paths of least action among goal states while avoiding costly states. The implicit efficiency rests upon reframing the learning problem through the lens of the free energy principle, under which it is sufficient to learn a generative model whose dynamics feature such an attracting set. For context, we briefly relate this perspective to value-based formulations (e.g., Bellman optimality) and then apply the active inference formulation to a small arcade game to illustrate de novo structure learning and ensuing agency.

无梯度从头学习。
本技术说明将主动推理应用于从零开始学习目标导向行为的问题,即从头学习。通过从头学习,我们的意思是直接从观察中发现用于顺序策略优化的离散生成模型的结构和参数。具体地说,我们的过程不断增长,然后简化模型,直到发现(广义)状态上的回拉吸引子;这个吸引集提供了目标状态之间行动最少的路径,同时避免了代价高昂的状态。隐式效率依赖于通过自由能原理来重构学习问题,在自由能原理下,学习一个具有这样一个吸引集的动力学特征的生成模型就足够了。作为上下文,我们简要地将这一观点与基于价值的公式(例如,Bellman最优性)联系起来,然后将主动推理公式应用于一个小型街机游戏,以说明从头开始的结构学习和随后的代理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信