{"title":"Enhanced Key Node Identification in Complex Networks Based on Fractal Dimension and Entropy-Driven Spring Model.","authors":"Zhaoliang Zhou, Xiaoli Huang, Zhaoyan Li, Wenbo Jiang","doi":"10.3390/e27090911","DOIUrl":null,"url":null,"abstract":"<p><p>How to identify the key nodes in a complex network is a major challenge. In this paper, we propose a Second-Order Neighborhood Entropy Fuzzy Local Dimension Spring Model (SNEFLD-SM). SNEFLD-SM model combines a variety of centrality methods based on spring model, such as second-order neighborhood centrality, betweenness centrality, and fractal dimension, to evaluate the importance of nodes. Fractal technology can effectively boost the framework's proficiency in understanding network self-similarity and hierarchical structure in multi-scale complex networks. It overcomes the limitation of the traditional centrality method which only focuses on local or global information. The method introduces information entropy and node influence range; information entropy can effectively capture the local and global features of the network. The node influence rangecan increase the node importance distinction and reduce the calculation cost. Meanwhile, an attenuation factor is introduced to suppress the \"rich-club\" phenomenon. Tests on six networks show that SNEFLD-SM has higher accuracy in critical node detection than traditional methods. Furthermore, the application of information entropy further strengthens the model's capability to recognize key nodes.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 9","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12469013/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27090911","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
How to identify the key nodes in a complex network is a major challenge. In this paper, we propose a Second-Order Neighborhood Entropy Fuzzy Local Dimension Spring Model (SNEFLD-SM). SNEFLD-SM model combines a variety of centrality methods based on spring model, such as second-order neighborhood centrality, betweenness centrality, and fractal dimension, to evaluate the importance of nodes. Fractal technology can effectively boost the framework's proficiency in understanding network self-similarity and hierarchical structure in multi-scale complex networks. It overcomes the limitation of the traditional centrality method which only focuses on local or global information. The method introduces information entropy and node influence range; information entropy can effectively capture the local and global features of the network. The node influence rangecan increase the node importance distinction and reduce the calculation cost. Meanwhile, an attenuation factor is introduced to suppress the "rich-club" phenomenon. Tests on six networks show that SNEFLD-SM has higher accuracy in critical node detection than traditional methods. Furthermore, the application of information entropy further strengthens the model's capability to recognize key nodes.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.