{"title":"Tree-Hillclimb Search: An Efficient and Interpretable Threat Assessment Method for Uncertain Battlefield Environments.","authors":"Zuoxin Zeng, Jinye Peng, Qi Feng","doi":"10.3390/e27090987","DOIUrl":null,"url":null,"abstract":"<p><p>In uncertain battlefield environments, rapid and accurate detection, identification of hostile targets, and assessment of threat levels are crucial for supporting effective decision-making. Despite offering the advantage of structural transparency, traditional analytical methods rely on expert knowledge to construct models and often fail to comprehensively capture the non-linear causal relationships among complex threat factors. In contrast, data-driven methods excel at uncovering patterns in data but suffer from limited interpretability due to their black-box nature. Owing to probabilistic graphical modeling capabilities, Bayesian networks possess unique advantages in threat assessment. However, existing models are either constrained by the limitation of expert experience or suffer from excessively high complexity due to structure learning algorithms, making it difficult to meet the stringent real-time requirements of uncertain battlefield environments. To address these issues, this paper proposes a new method, the Tree-Hillclimb Search method-an efficient and interpretable threat assessment method specifically designed for uncertain battlefield environments. The core of the method is a structure learning algorithm constrained by expert knowledge-the initial network structure constructed from expert knowledge serves as a constraint, enabling the discovery of hidden causal dependencies among variables through structure learning. The model is then refined under these expert knowledge constraints and can effectively balance accuracy and complexity. Sensitivity analysis further validates the consistency between the model structure and the influence degree of threat factors, providing a theoretical basis for formulating hierarchical threat assessment strategies under resource-constrained conditions, which can effectively optimize sensor resource allocation. The Tree-Hillclimb Search method features (1) enhanced interpretability; (2) high predictive accuracy; (3) high efficiency and real-time performance; (4) actual impact on battlefield decision-making; and (5) good generality and broad applicability.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 9","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12469082/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27090987","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In uncertain battlefield environments, rapid and accurate detection, identification of hostile targets, and assessment of threat levels are crucial for supporting effective decision-making. Despite offering the advantage of structural transparency, traditional analytical methods rely on expert knowledge to construct models and often fail to comprehensively capture the non-linear causal relationships among complex threat factors. In contrast, data-driven methods excel at uncovering patterns in data but suffer from limited interpretability due to their black-box nature. Owing to probabilistic graphical modeling capabilities, Bayesian networks possess unique advantages in threat assessment. However, existing models are either constrained by the limitation of expert experience or suffer from excessively high complexity due to structure learning algorithms, making it difficult to meet the stringent real-time requirements of uncertain battlefield environments. To address these issues, this paper proposes a new method, the Tree-Hillclimb Search method-an efficient and interpretable threat assessment method specifically designed for uncertain battlefield environments. The core of the method is a structure learning algorithm constrained by expert knowledge-the initial network structure constructed from expert knowledge serves as a constraint, enabling the discovery of hidden causal dependencies among variables through structure learning. The model is then refined under these expert knowledge constraints and can effectively balance accuracy and complexity. Sensitivity analysis further validates the consistency between the model structure and the influence degree of threat factors, providing a theoretical basis for formulating hierarchical threat assessment strategies under resource-constrained conditions, which can effectively optimize sensor resource allocation. The Tree-Hillclimb Search method features (1) enhanced interpretability; (2) high predictive accuracy; (3) high efficiency and real-time performance; (4) actual impact on battlefield decision-making; and (5) good generality and broad applicability.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.