{"title":"Quantum Computing for Transport Network Optimization.","authors":"Jiangwei Ju, Zhihang Liu, Yuelin Bai, Yong Wang, Qi Gao, Yin Ma, Chao Zheng, Kai Wen","doi":"10.3390/e27090953","DOIUrl":null,"url":null,"abstract":"<p><p>Public transport systems play a crucial role in the development of large cities. Bus network design to optimize passenger flow coverage in a global metropolis is a challenging task. As an essential part of bus travel planning, considering the bus transfer factor in the existing extremely complex and extensive public bus network usually leads to a optimization problem characterized by high-dimensionality and non-linearity. While classical computers struggle to deal with this kind of problems, quantum computers shed new light into this field. The coherent Ising machine (CIM), a specialized optical quantum computer using a photonic dissipative architecture, has shown its remarkable computational power in combinatorial optimization problems. We construct the classical model and the quadratic unconstrained binary optimization (QUBO) model of the bus route optimization problem, and solve it using a classical computer and CIM, respectively. Our experimental results demonstrate the significant acceleration capability of CIM over classical computers in finding the optimal or near-optimal solutions, albeit subject to the hardware limitations of the 100-qubit CIM.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 9","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468647/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27090953","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Public transport systems play a crucial role in the development of large cities. Bus network design to optimize passenger flow coverage in a global metropolis is a challenging task. As an essential part of bus travel planning, considering the bus transfer factor in the existing extremely complex and extensive public bus network usually leads to a optimization problem characterized by high-dimensionality and non-linearity. While classical computers struggle to deal with this kind of problems, quantum computers shed new light into this field. The coherent Ising machine (CIM), a specialized optical quantum computer using a photonic dissipative architecture, has shown its remarkable computational power in combinatorial optimization problems. We construct the classical model and the quadratic unconstrained binary optimization (QUBO) model of the bus route optimization problem, and solve it using a classical computer and CIM, respectively. Our experimental results demonstrate the significant acceleration capability of CIM over classical computers in finding the optimal or near-optimal solutions, albeit subject to the hardware limitations of the 100-qubit CIM.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.