The Realization of One-to-Two-Port Beam Division in a Five-Channel Acoustic System.

IF 2 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-09-12 DOI:10.3390/e27090949
Rui Wang, Zhicheng Xu, Shuai Tang, Wencong Zhang, Jiabin Hou, Haipeng Cui, Yang Liu
{"title":"The Realization of One-to-Two-Port Beam Division in a Five-Channel Acoustic System.","authors":"Rui Wang, Zhicheng Xu, Shuai Tang, Wencong Zhang, Jiabin Hou, Haipeng Cui, Yang Liu","doi":"10.3390/e27090949","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, one-to-two-port beam division is achieved in a five-channel acoustic system. The adjacent composing channels are connected by space-varying air slits, thus realizing quantum-like adiabatic energy transfer. Equal-weight beam splitting with opposite phases from two different output ports is obtained in a broadband signal of 6 kHz-10.5 kHz. In addition, owing to the existence of distinct evolution paths, one-way beam division is exhibited when a certain loss is evenly exerted inside the system. Furthermore, one-to-m-port beam division can also be achieved by extending the composing channels, thus making it possible to construct an asymmetric acoustic beam splitter. The simulated results verify that the incident waves can be split into opposite directions unidirectionally, which may have potential applications in concealed information transmission and eavesdropping.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 9","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468376/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27090949","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, one-to-two-port beam division is achieved in a five-channel acoustic system. The adjacent composing channels are connected by space-varying air slits, thus realizing quantum-like adiabatic energy transfer. Equal-weight beam splitting with opposite phases from two different output ports is obtained in a broadband signal of 6 kHz-10.5 kHz. In addition, owing to the existence of distinct evolution paths, one-way beam division is exhibited when a certain loss is evenly exerted inside the system. Furthermore, one-to-m-port beam division can also be achieved by extending the composing channels, thus making it possible to construct an asymmetric acoustic beam splitter. The simulated results verify that the incident waves can be split into opposite directions unidirectionally, which may have potential applications in concealed information transmission and eavesdropping.

五声道声学系统中一对二端口波束分割的实现。
在这项工作中,在五通道声学系统中实现了一对双端口波束分割。相邻的合成通道通过空间变化的气缝连接,从而实现了类量子的绝热能量传递。在6 kHz-10.5 kHz的宽带信号中,从两个不同的输出端口获得相反相位的等重波束劈裂。另外,由于不同演化路径的存在,当系统内部均匀施加一定的损耗时,会出现单向束分。此外,还可以通过扩展组合通道来实现一对m端口的波束分割,从而使构造非对称声分束器成为可能。仿真结果表明,入射波可以单向分裂成相反方向,在隐蔽信息传输和窃听中具有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信