Yuanshu Zhao, Zhibin Wu, Yongkun Mu, Yuefei Jia, Yandong Jia, Gang Wang
{"title":"Constructing Hetero-Microstructures in Additively Manufactured High-Performance High-Entropy Alloys.","authors":"Yuanshu Zhao, Zhibin Wu, Yongkun Mu, Yuefei Jia, Yandong Jia, Gang Wang","doi":"10.3390/e27090917","DOIUrl":null,"url":null,"abstract":"<p><p>High-entropy alloys (HEAs) have shown great promise for applications in extreme service environments due to their exceptional mechanical properties and thermal stability. However, traditional alloy design often struggles to balance multiple properties such as strength and ductility. Constructing heterogeneous microstructures has emerged as an effective strategy to overcome this challenge. With the rapid advancement of additive manufacturing (AM) technologies, their unique ability to fabricate complex, spatially controlled, and non-equilibrium microstructures offers unprecedented opportunities for tailoring heterostructures in HEAs with high precision. This review highlights recent progress in utilizing AM to engineer heterogeneous microstructures in high-performance HEAs. It systematically examines the multiscale heterogeneities induced by the thermal cycling effects inherent to AM techniques such as selective laser melting (SLM) and electron beam melting (EBM). The review further discusses the critical role of these heterostructures in enhancing the synergy between strength and ductility, as well as improving work-hardening behavior. AM enables the design-driven fabrication of tailored microstructures, signaling a shift from traditional \"performance-driven\" alloy design paradigms toward a new model centered on \"microstructural control\". In summary, additive manufacturing provides an ideal platform for constructing heterogeneous HEAs and holds significant promise for advancing high-performance alloy systems. Its integration into alloy design represents both a valuable theoretical framework and a practical pathway for developing next-generation structural materials with multiple performance attributes.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 9","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468468/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27090917","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
High-entropy alloys (HEAs) have shown great promise for applications in extreme service environments due to their exceptional mechanical properties and thermal stability. However, traditional alloy design often struggles to balance multiple properties such as strength and ductility. Constructing heterogeneous microstructures has emerged as an effective strategy to overcome this challenge. With the rapid advancement of additive manufacturing (AM) technologies, their unique ability to fabricate complex, spatially controlled, and non-equilibrium microstructures offers unprecedented opportunities for tailoring heterostructures in HEAs with high precision. This review highlights recent progress in utilizing AM to engineer heterogeneous microstructures in high-performance HEAs. It systematically examines the multiscale heterogeneities induced by the thermal cycling effects inherent to AM techniques such as selective laser melting (SLM) and electron beam melting (EBM). The review further discusses the critical role of these heterostructures in enhancing the synergy between strength and ductility, as well as improving work-hardening behavior. AM enables the design-driven fabrication of tailored microstructures, signaling a shift from traditional "performance-driven" alloy design paradigms toward a new model centered on "microstructural control". In summary, additive manufacturing provides an ideal platform for constructing heterogeneous HEAs and holds significant promise for advancing high-performance alloy systems. Its integration into alloy design represents both a valuable theoretical framework and a practical pathway for developing next-generation structural materials with multiple performance attributes.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.