{"title":"On a Model of Rumors Spreading Through Social Media.","authors":"Laurance Fakih, Andrei Halanay, Florin Avram","doi":"10.3390/e27090903","DOIUrl":null,"url":null,"abstract":"<p><p>Rumors have become a serious issue in today's modern era, particularly in view of increased activity in social and online platforms. False information can go viral almost instantaneously through social networks, which immediately affect society and people's minds. The form of rumor it develops within, whether fabricated intentionally or not, impacts public perspectives through manipulation of emotion and cognition. We propose and analyze a mathematical model describing how rumors can spread through an online social media (OSM) platform. Our model focuses on two coexisting rumors (two strains). The results provide some conditions under which rumors die out or become persistent, and they show the influence of delays, skepticism levels, and incidence rates on the dynamics of information spread. We combine analytical tools (Routh-Hurwitz tests and delay-induced stability switches) with MATLAB/Python simulations to validate the theoretical predictions.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 9","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468598/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27090903","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Rumors have become a serious issue in today's modern era, particularly in view of increased activity in social and online platforms. False information can go viral almost instantaneously through social networks, which immediately affect society and people's minds. The form of rumor it develops within, whether fabricated intentionally or not, impacts public perspectives through manipulation of emotion and cognition. We propose and analyze a mathematical model describing how rumors can spread through an online social media (OSM) platform. Our model focuses on two coexisting rumors (two strains). The results provide some conditions under which rumors die out or become persistent, and they show the influence of delays, skepticism levels, and incidence rates on the dynamics of information spread. We combine analytical tools (Routh-Hurwitz tests and delay-induced stability switches) with MATLAB/Python simulations to validate the theoretical predictions.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.