Dataset-Learning Duality and Emergent Criticality.

IF 2 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-09-22 DOI:10.3390/e27090989
Ekaterina Kukleva, Vitaly Vanchurin
{"title":"Dataset-Learning Duality and Emergent Criticality.","authors":"Ekaterina Kukleva, Vitaly Vanchurin","doi":"10.3390/e27090989","DOIUrl":null,"url":null,"abstract":"<p><p>In artificial neural networks, the activation dynamics of non-trainable variables are strongly coupled to the learning dynamics of trainable variables. During the activation pass, the boundary neurons (e.g., input neurons) are mapped to the bulk neurons (e.g., hidden neurons), and during the learning pass, both bulk and boundary neurons are mapped to changes in trainable variables (e.g., weights and biases). For example, in feedforward neural networks, forward propagation is the activation pass and backward propagation is the learning pass. We show that a composition of the two maps establishes a duality map between a subspace of non-trainable boundary variables (e.g., dataset) and a tangent subspace of trainable variables (i.e., learning). In general, the dataset-learning duality is a complex nonlinear map between high-dimensional spaces. We use duality to study the emergence of criticality, or the power-law distribution of fluctuations of the trainable variables, using a toy and large models at learning equilibrium. In particular, we show that criticality can emerge in the learning system even from the dataset in a non-critical state, and that the power-law distribution can be modified by changing either the activation function or the loss function.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 9","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468801/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27090989","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In artificial neural networks, the activation dynamics of non-trainable variables are strongly coupled to the learning dynamics of trainable variables. During the activation pass, the boundary neurons (e.g., input neurons) are mapped to the bulk neurons (e.g., hidden neurons), and during the learning pass, both bulk and boundary neurons are mapped to changes in trainable variables (e.g., weights and biases). For example, in feedforward neural networks, forward propagation is the activation pass and backward propagation is the learning pass. We show that a composition of the two maps establishes a duality map between a subspace of non-trainable boundary variables (e.g., dataset) and a tangent subspace of trainable variables (i.e., learning). In general, the dataset-learning duality is a complex nonlinear map between high-dimensional spaces. We use duality to study the emergence of criticality, or the power-law distribution of fluctuations of the trainable variables, using a toy and large models at learning equilibrium. In particular, we show that criticality can emerge in the learning system even from the dataset in a non-critical state, and that the power-law distribution can be modified by changing either the activation function or the loss function.

数据集学习的二元性和紧急临界性。
在人工神经网络中,不可训练变量的激活动态与可训练变量的学习动态是强耦合的。在激活过程中,边界神经元(如输入神经元)被映射到体积神经元(如隐藏神经元),在学习过程中,体积和边界神经元都被映射到可训练变量的变化(如权重和偏差)。例如,在前馈神经网络中,前向传播是激活通道,后向传播是学习通道。我们证明了两个映射的组合在不可训练边界变量的子空间(例如,数据集)和可训练变量的切线子空间(例如,学习)之间建立了对偶映射。一般来说,数据集学习对偶是一个复杂的高维空间之间的非线性映射。我们使用对偶性来研究临界的出现,或可训练变量波动的幂律分布,在学习平衡时使用玩具和大型模型。特别是,我们表明,临界状态可以出现在学习系统中,甚至从非临界状态的数据集,幂律分布可以通过改变激活函数或损失函数来修改。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信