Determining the Upper-Bound on the Code Distance of Quantum Stabilizer Codes Through the Monte Carlo Method Based on Fully Decoupled Belief Propagation.

IF 2 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-09-09 DOI:10.3390/e27090940
Zhipeng Liang, Zicheng Wang, Zhengzhong Yi, Fusheng Yang, Xuan Wang
{"title":"Determining the Upper-Bound on the Code Distance of Quantum Stabilizer Codes Through the Monte Carlo Method Based on Fully Decoupled Belief Propagation.","authors":"Zhipeng Liang, Zicheng Wang, Zhengzhong Yi, Fusheng Yang, Xuan Wang","doi":"10.3390/e27090940","DOIUrl":null,"url":null,"abstract":"<p><p>The code distance is a critical parameter of quantum stabilizer codes (QSCs), and determining it-whether exactly or approximately-is known to be an NP-complete problem. However, its upper bound can be determined efficiently by some methods such as the Monte Carlo method. Leveraging the Monte Carlo method, we propose an algorithm to compute the upper bound on the code distance of a given QSC using fully decoupled belief propagation combined with ordered statistics decoding (FDBP-OSD). Our algorithm demonstrates high precision: for various QSCs with known distances, the computed upper bounds match the actual values. Additionally, we explore upper bounds for the minimum weight of logical <i>X</i> operators in the Z-type Tanner-graph-recursive-expansion (Z-TGRE) code and the Chamon code-an XYZ product code constructed from three repetition codes. The results on Z-TGRE codes align with theoretical analysis, while the results on Chamon codes suggest that XYZ product codes may achieve a code distance of O(N2/3), which supports the conjecture of Leverrier et al.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 9","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468434/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27090940","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The code distance is a critical parameter of quantum stabilizer codes (QSCs), and determining it-whether exactly or approximately-is known to be an NP-complete problem. However, its upper bound can be determined efficiently by some methods such as the Monte Carlo method. Leveraging the Monte Carlo method, we propose an algorithm to compute the upper bound on the code distance of a given QSC using fully decoupled belief propagation combined with ordered statistics decoding (FDBP-OSD). Our algorithm demonstrates high precision: for various QSCs with known distances, the computed upper bounds match the actual values. Additionally, we explore upper bounds for the minimum weight of logical X operators in the Z-type Tanner-graph-recursive-expansion (Z-TGRE) code and the Chamon code-an XYZ product code constructed from three repetition codes. The results on Z-TGRE codes align with theoretical analysis, while the results on Chamon codes suggest that XYZ product codes may achieve a code distance of O(N2/3), which supports the conjecture of Leverrier et al.

基于完全解耦信念传播的蒙特卡罗方法确定量子稳定器码距上界。
码距是量子稳定器码的一个关键参数,确定码距是一个np完全问题。但是,它的上界可以用蒙特卡罗法等方法有效地确定。利用蒙特卡罗方法,我们提出了一种利用完全解耦的信念传播结合有序统计解码(FDBP-OSD)来计算给定QSC码距上界的算法。我们的算法具有很高的精度:对于已知距离的各种QSCs,计算的上界与实际值相匹配。此外,我们探讨了z型tgre码和Chamon码中逻辑X算子最小权值的上界——Chamon码是由三个重复码构成的XYZ乘积码。在Z-TGRE码上的结果与理论分析一致,而在Chamon码上的结果表明XYZ产品码可能达到0 (N2/3)的码距,支持了Leverrier等人的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信