Igor Makarov, Elena Koshevaya, Alina Pechenina, Galina Boyko, Anna Starshinova, Dmitry Kudlay, Taiana Makarova, Lubov Mitrofanova
{"title":"A Comparative Analysis of SegFormer, FabE-Net and VGG-UNet Models for the Segmentation of Neural Structures on Histological Sections.","authors":"Igor Makarov, Elena Koshevaya, Alina Pechenina, Galina Boyko, Anna Starshinova, Dmitry Kudlay, Taiana Makarova, Lubov Mitrofanova","doi":"10.3390/diagnostics15182408","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Segmenting nerve fibres in histological images is a tricky job because of how much the tissue looks can change. Modern neural network architectures, including U-Net and transformers, demonstrate varying degrees of effectiveness in this area. The aim of this study is to conduct a comparative analysis of the SegFormer, VGG-UNet, and FabE-Net models in terms of segmentation quality and speed. <b>Methods:</b> The training sample consisted of more than 75,000 pairs of images of different tissues (original slice and corresponding mask), scaled from 1024 × 1024 to 224 × 224 pixels to optimise computations. Three neural network architectures were used: the classic VGG-UNet, FabE-Net with attention and global context perception blocks, and the SegFormer transformer model. For an objective assessment of the quality of the models, expert validation was carried out with the participation of four independent pathologists, who evaluated the quality of segmentation according to specified criteria. Quality metrics (precision, recall, F1-score, accuracy) were calculated as averages based on the assessments of all experts, which made it possible to take into account variability in interpretation and increase the reliability of the results. <b>Results:</b> SegFormer achieved stable stabilisation of the loss function faster than the other models-by the 20-30th epoch, compared to 45-60 epochs for VGG-UNet and FabE-Net. Despite taking longer to train per epoch, SegFormer produced the best segmentation quality, with the following metrics: precision 0.84, recall 0.99, F1-score 0.91 and accuracy 0.89. It also annotated a complete histological section in the fastest time. Visual analysis revealed that, compared to other models, which tended to produce incomplete or excessive segmentation, SegFormer more accurately and completely highlights nerve structures. <b>Conclusions:</b> Using attention mechanisms in SegFormer compensates for morphological variability in tissues, resulting in faster and higher-quality segmentation. Image scaling does not impair training quality while significantly accelerating computational processes. These results confirm the potential of SegFormer for practical use in digital pathology, while also highlighting the need for high-precision, immunohistochemistry-informed labelling to improve segmentation accuracy.</p>","PeriodicalId":11225,"journal":{"name":"Diagnostics","volume":"15 18","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468733/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/diagnostics15182408","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Segmenting nerve fibres in histological images is a tricky job because of how much the tissue looks can change. Modern neural network architectures, including U-Net and transformers, demonstrate varying degrees of effectiveness in this area. The aim of this study is to conduct a comparative analysis of the SegFormer, VGG-UNet, and FabE-Net models in terms of segmentation quality and speed. Methods: The training sample consisted of more than 75,000 pairs of images of different tissues (original slice and corresponding mask), scaled from 1024 × 1024 to 224 × 224 pixels to optimise computations. Three neural network architectures were used: the classic VGG-UNet, FabE-Net with attention and global context perception blocks, and the SegFormer transformer model. For an objective assessment of the quality of the models, expert validation was carried out with the participation of four independent pathologists, who evaluated the quality of segmentation according to specified criteria. Quality metrics (precision, recall, F1-score, accuracy) were calculated as averages based on the assessments of all experts, which made it possible to take into account variability in interpretation and increase the reliability of the results. Results: SegFormer achieved stable stabilisation of the loss function faster than the other models-by the 20-30th epoch, compared to 45-60 epochs for VGG-UNet and FabE-Net. Despite taking longer to train per epoch, SegFormer produced the best segmentation quality, with the following metrics: precision 0.84, recall 0.99, F1-score 0.91 and accuracy 0.89. It also annotated a complete histological section in the fastest time. Visual analysis revealed that, compared to other models, which tended to produce incomplete or excessive segmentation, SegFormer more accurately and completely highlights nerve structures. Conclusions: Using attention mechanisms in SegFormer compensates for morphological variability in tissues, resulting in faster and higher-quality segmentation. Image scaling does not impair training quality while significantly accelerating computational processes. These results confirm the potential of SegFormer for practical use in digital pathology, while also highlighting the need for high-precision, immunohistochemistry-informed labelling to improve segmentation accuracy.
DiagnosticsBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
4.70
自引率
8.30%
发文量
2699
审稿时长
19.64 days
期刊介绍:
Diagnostics (ISSN 2075-4418) is an international scholarly open access journal on medical diagnostics. It publishes original research articles, reviews, communications and short notes on the research and development of medical diagnostics. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodological details must be provided for research articles.