{"title":"A Novel Co-Designed Multi-Domain Entropy and Its Dynamic Synapse Classification Approach for EEG Seizure Detection.","authors":"Guanyuan Feng, Jiawen Li, Yicheng Zhong, Shuang Zhang, Xin Liu, Mang I Vai, Kaihan Lin, Xianxian Zeng, Jun Yuan, Rongjun Chen","doi":"10.3390/e27090919","DOIUrl":null,"url":null,"abstract":"<p><p>Automated electroencephalography (EEG) seizure detection is meaningful in clinical medicine. However, current approaches often lack comprehensive feature extraction and are limited by generic classifier architectures, which limit their effectiveness in complex real-world scenarios. To overcome this traditional coupling between feature representation and classifier development, this study proposes DySC-MDE, an end-to-end co-designed framework for seizure detection. A novel multi-domain entropy (MDE) representation is constructed at the feature level based on amplitude-sensitive permutation entropy (ASPE), which adopts entropy-based quantifiers to characterize the nonlinear dynamics of EEG signals across diverse domains. Specifically, ASPE is extended into three distinct variants, refined composite multiscale ASPE (RCMASPE), discrete wavelet transform-based hierarchical ASPE (HASPE-DWT), and time-shift multiscale ASPE (TSMASPE), to represent various temporal and spectral dynamics of EEG signals. At the classifier level, a dynamic synapse classifier (DySC) is proposed to align with the structure of the MDE features. Particularly, DySC includes three parallel and specialized processing pathways, each tailored to a specific entropy variant. These outputs are then adaptively fused through a dynamic synaptic gating mechanism, which can enhance the model's ability to integrate heterogeneous information sources. To fully evaluate the effectiveness of the proposed method, extensive experiments are conducted on two public datasets using cross-validation. For the binary classification task, DySC-MDE achieves an accuracy of 97.50% and 98.93% and an F1-score of 97.58% and 98.87% in the Bonn and CHB-MIT datasets, respectively. Moreover, in the three-class task, the proposed method maintains a high F1-score of 96.83%, revealing its strong discriminative performance and generalization ability across different categories. Consequently, these impressive results demonstrate that the joint optimization of nonlinear dynamic feature representations and structure-aware classifiers can further improve the analysis of complex epileptic EEG signals, which opens a novel direction for robust seizure detection.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 9","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468615/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27090919","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Automated electroencephalography (EEG) seizure detection is meaningful in clinical medicine. However, current approaches often lack comprehensive feature extraction and are limited by generic classifier architectures, which limit their effectiveness in complex real-world scenarios. To overcome this traditional coupling between feature representation and classifier development, this study proposes DySC-MDE, an end-to-end co-designed framework for seizure detection. A novel multi-domain entropy (MDE) representation is constructed at the feature level based on amplitude-sensitive permutation entropy (ASPE), which adopts entropy-based quantifiers to characterize the nonlinear dynamics of EEG signals across diverse domains. Specifically, ASPE is extended into three distinct variants, refined composite multiscale ASPE (RCMASPE), discrete wavelet transform-based hierarchical ASPE (HASPE-DWT), and time-shift multiscale ASPE (TSMASPE), to represent various temporal and spectral dynamics of EEG signals. At the classifier level, a dynamic synapse classifier (DySC) is proposed to align with the structure of the MDE features. Particularly, DySC includes three parallel and specialized processing pathways, each tailored to a specific entropy variant. These outputs are then adaptively fused through a dynamic synaptic gating mechanism, which can enhance the model's ability to integrate heterogeneous information sources. To fully evaluate the effectiveness of the proposed method, extensive experiments are conducted on two public datasets using cross-validation. For the binary classification task, DySC-MDE achieves an accuracy of 97.50% and 98.93% and an F1-score of 97.58% and 98.87% in the Bonn and CHB-MIT datasets, respectively. Moreover, in the three-class task, the proposed method maintains a high F1-score of 96.83%, revealing its strong discriminative performance and generalization ability across different categories. Consequently, these impressive results demonstrate that the joint optimization of nonlinear dynamic feature representations and structure-aware classifiers can further improve the analysis of complex epileptic EEG signals, which opens a novel direction for robust seizure detection.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.