{"title":"Application of the Three-Group Model to the 2024 US Elections.","authors":"Miron Kaufman, Sanda Kaufman, Hung T Diep","doi":"10.3390/e27090935","DOIUrl":null,"url":null,"abstract":"<p><p>Political polarization in Western democracies has accelerated in the last decade, with negative social consequences. Research across disciplines on antecedents, manifestations and societal impacts is hindered by social systems' complexity: their constant flux impedes tracing causes of observed trends and prediction of consequences, hampering their mitigation. Social physics models exploit a characteristic of complex systems: what seems chaotic at one observation level may exhibit patterns at a higher level. Therefore, dynamic modeling of complex systems allows anticipation of possible events. We use this approach to anticipate 2024 US election results. We consider the highly polarized Democrats and Republicans, and Independents fluctuating between them. We generate average group-stance scenarios in time and explore how polarization and depolarization might have affected 2024 voting outcomes. We find that reducing polarization might advantage the larger voting group. We also explore ways to reduce polarization, and their potential effects on election results. The results inform regarding the perils of polarization trends, and on possibilities of changing course.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 9","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468203/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27090935","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Political polarization in Western democracies has accelerated in the last decade, with negative social consequences. Research across disciplines on antecedents, manifestations and societal impacts is hindered by social systems' complexity: their constant flux impedes tracing causes of observed trends and prediction of consequences, hampering their mitigation. Social physics models exploit a characteristic of complex systems: what seems chaotic at one observation level may exhibit patterns at a higher level. Therefore, dynamic modeling of complex systems allows anticipation of possible events. We use this approach to anticipate 2024 US election results. We consider the highly polarized Democrats and Republicans, and Independents fluctuating between them. We generate average group-stance scenarios in time and explore how polarization and depolarization might have affected 2024 voting outcomes. We find that reducing polarization might advantage the larger voting group. We also explore ways to reduce polarization, and their potential effects on election results. The results inform regarding the perils of polarization trends, and on possibilities of changing course.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.