Wan Azani Mustafa, Khalis Khiruddin, Syahrul Affandi Saidi, Khairur Rijal Jamaludin, Halimaton Hakimi, Mohd Aminudin Jamlos
{"title":"Automated Cervical Nuclei Segmentation in Pap Smear Images Using Enhanced Morphological Thresholding Techniques.","authors":"Wan Azani Mustafa, Khalis Khiruddin, Syahrul Affandi Saidi, Khairur Rijal Jamaludin, Halimaton Hakimi, Mohd Aminudin Jamlos","doi":"10.3390/diagnostics15182328","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background and Objective:</b> Cervical cancer remains one of the leading causes of death among women worldwide, particularly in regions with limited access to early screening. Pap smear screening is the primary tool for early detection, but manual interpretation is labor-intensive, subjective, and prone to inconsistency and misdiagnosis. Accurate segmentation of cervical cell nuclei is essential for automated analysis but is often hampered by overlapping cells, poor contrast, and staining variability. This research aims to develop an improved algorithm for accurate cervical nucleus segmentation to support automated Pap smear analysis. <b>Method:</b> The proposed method involves a combination of adaptive gamma correction for contrast enhancement, followed by Otsu thresholding for segmentation. Post-processing is performed using adaptive morphological operations to refine the results. The system is evaluated using standard image quality assessment metrics and validated against ground truth annotations. <b>Result:</b> The results show a significant improvement in segmentation performance over conventional methods. The proposed algorithm achieved a Precision of 0.9965, an F-measure of 97.29%, and an Accuracy of 98.39%. The PSNR value of 16.62 indicates enhanced image clarity after preprocessing. The method also improved sensitivity, leading to better identification of nuclei boundaries. Advanced preprocessing techniques, including edge-preserving filters and multi-Otsu thresholding, contributed to more accurate cell separation. The segmentation method proved effective across varying cell overlaps and staining conditions. Comparative evaluations with traditional clustering methods confirmed its superior performance. <b>Conclusions:</b> The proposed algorithm delivers robust and accurate segmentation of cervical cell nuclei, addressing common challenges in Pap smear image analysis. It provides a consistent framework for automated screening tools. This work enhances diagnostic reliability in cervical cancer screening and offers a foundation for broader applications in medical image analysis.</p>","PeriodicalId":11225,"journal":{"name":"Diagnostics","volume":"15 18","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468220/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/diagnostics15182328","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background and Objective: Cervical cancer remains one of the leading causes of death among women worldwide, particularly in regions with limited access to early screening. Pap smear screening is the primary tool for early detection, but manual interpretation is labor-intensive, subjective, and prone to inconsistency and misdiagnosis. Accurate segmentation of cervical cell nuclei is essential for automated analysis but is often hampered by overlapping cells, poor contrast, and staining variability. This research aims to develop an improved algorithm for accurate cervical nucleus segmentation to support automated Pap smear analysis. Method: The proposed method involves a combination of adaptive gamma correction for contrast enhancement, followed by Otsu thresholding for segmentation. Post-processing is performed using adaptive morphological operations to refine the results. The system is evaluated using standard image quality assessment metrics and validated against ground truth annotations. Result: The results show a significant improvement in segmentation performance over conventional methods. The proposed algorithm achieved a Precision of 0.9965, an F-measure of 97.29%, and an Accuracy of 98.39%. The PSNR value of 16.62 indicates enhanced image clarity after preprocessing. The method also improved sensitivity, leading to better identification of nuclei boundaries. Advanced preprocessing techniques, including edge-preserving filters and multi-Otsu thresholding, contributed to more accurate cell separation. The segmentation method proved effective across varying cell overlaps and staining conditions. Comparative evaluations with traditional clustering methods confirmed its superior performance. Conclusions: The proposed algorithm delivers robust and accurate segmentation of cervical cell nuclei, addressing common challenges in Pap smear image analysis. It provides a consistent framework for automated screening tools. This work enhances diagnostic reliability in cervical cancer screening and offers a foundation for broader applications in medical image analysis.
DiagnosticsBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
4.70
自引率
8.30%
发文量
2699
审稿时长
19.64 days
期刊介绍:
Diagnostics (ISSN 2075-4418) is an international scholarly open access journal on medical diagnostics. It publishes original research articles, reviews, communications and short notes on the research and development of medical diagnostics. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodological details must be provided for research articles.