{"title":"Targeting the Mitochondria in High-Grade Gliomas.","authors":"Shaunak Sathe, Qi Li, Jinkyu Jung, Jing Wu","doi":"10.3390/cancers17183062","DOIUrl":null,"url":null,"abstract":"<p><p>High-grade gliomas are aggressive primary brain tumors and often fatal. They are characterized by rapid growth, treatment resistance, and significant heterogeneity both within and between tumors. A growing body of evidence highlights the mitochondria, dynamic organelles essential for energy production, apoptosis regulation, and metabolic rewiring, as a critical driver in glioma progression and treatment resistance. As a result, these insights have sparked growing interest in mitochondrial-directed therapies. This review highlights the distinct metabolic features and mitochondrial processes of glioma, outlining the rationale for targeting mitochondrial function. We discuss recent advances in mitochondrial-targeted therapies, with a focus on caseinolytic protease P (ClpP) agonism as a breakthrough in the treatment of diffuse midline glioma (DMG). Moreover, we discuss the pathogenic link between mitochondrial metabolism and epigenetic regulation, and the potential therapeutic benefit of disrupting this interaction.</p>","PeriodicalId":9681,"journal":{"name":"Cancers","volume":"17 18","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468196/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancers","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/cancers17183062","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
High-grade gliomas are aggressive primary brain tumors and often fatal. They are characterized by rapid growth, treatment resistance, and significant heterogeneity both within and between tumors. A growing body of evidence highlights the mitochondria, dynamic organelles essential for energy production, apoptosis regulation, and metabolic rewiring, as a critical driver in glioma progression and treatment resistance. As a result, these insights have sparked growing interest in mitochondrial-directed therapies. This review highlights the distinct metabolic features and mitochondrial processes of glioma, outlining the rationale for targeting mitochondrial function. We discuss recent advances in mitochondrial-targeted therapies, with a focus on caseinolytic protease P (ClpP) agonism as a breakthrough in the treatment of diffuse midline glioma (DMG). Moreover, we discuss the pathogenic link between mitochondrial metabolism and epigenetic regulation, and the potential therapeutic benefit of disrupting this interaction.
期刊介绍:
Cancers (ISSN 2072-6694) is an international, peer-reviewed open access journal on oncology. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.