Deciphering the complexities of crystalline state(s) with molecular simulations.

IF 6.2 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Caroline Desgranges, Jerome Delhommelle
{"title":"Deciphering the complexities of crystalline state(s) with molecular simulations.","authors":"Caroline Desgranges, Jerome Delhommelle","doi":"10.1038/s42004-025-01667-z","DOIUrl":null,"url":null,"abstract":"<p><p>Predicting the outcome of a crystallization process remains a long-standing challenge in solid state chemistry. This stems from the subtle interplay between thermodynamics and kinetics that results in a complex crystal energy landscape, spanned by many polymorphs and other metastable intermediates. Molecular simulations are uniquely positioned to unravel this interplay, as they constitute a framework that can compute free energies (thermodynamics), barriers (kinetics), and visualize the crystallization mechanisms at high resolution. We show here how recent progress in computational methods, and their augmentation with Machine Learning, has advanced our ability to predict crystal structure and simulate crystal nucleation.</p>","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":"8 1","pages":"281"},"PeriodicalIF":6.2000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12475388/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s42004-025-01667-z","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Predicting the outcome of a crystallization process remains a long-standing challenge in solid state chemistry. This stems from the subtle interplay between thermodynamics and kinetics that results in a complex crystal energy landscape, spanned by many polymorphs and other metastable intermediates. Molecular simulations are uniquely positioned to unravel this interplay, as they constitute a framework that can compute free energies (thermodynamics), barriers (kinetics), and visualize the crystallization mechanisms at high resolution. We show here how recent progress in computational methods, and their augmentation with Machine Learning, has advanced our ability to predict crystal structure and simulate crystal nucleation.

用分子模拟破译晶体状态的复杂性。
预测结晶过程的结果仍然是固态化学中一个长期存在的挑战。这源于热力学和动力学之间微妙的相互作用,导致了复杂的晶体能量景观,由许多多晶和其他亚稳中间体跨越。分子模拟具有独特的定位来揭示这种相互作用,因为它们构成了一个框架,可以计算自由能(热力学),屏障(动力学),并以高分辨率可视化结晶机制。我们在这里展示了计算方法的最新进展,以及它们与机器学习的增强,如何提高了我们预测晶体结构和模拟晶体成核的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Chemistry
Communications Chemistry Chemistry-General Chemistry
CiteScore
7.70
自引率
1.70%
发文量
146
审稿时长
13 weeks
期刊介绍: Communications Chemistry is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the chemical sciences. Research papers published by the journal represent significant advances bringing new chemical insight to a specialized area of research. We also aim to provide a community forum for issues of importance to all chemists, regardless of sub-discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信